International Journal of Computer Science Engineering Techniques (IJCSE) Volume 10 Issue 1 ,January 2026

ISSN :2455-135X

© 2025 International Scientific and Academic Research (ISAR) Publisher

OncoAlFusion: A Unified Artificial Intelligence System for
Multi-Cancer Diagnosis and Prognosis

Mrs. Geethanjali C M', Aravind Reddy N%, Gowtham N Rao3, K S Vignesh*, Lekhan S°

1Assistant Professor, Department of CSE (Al & ML), JSS Academy of Technical Education, Bengaluru, Karnataka, India
2,3,4,55tudents, Department of CSE (Al & ML), JSS Academy of Technical Education, Bengaluru, Karnataka, India
lgeethanjalicm@jssateb.ac.in, 2aravindreddyn2003@gmail.com, 3ngowthamrao@gmail.com, 4Vigneshks2003 @gmail.com,
>lekhan269@gmail.com

Academic Year 2025—-2026

Abstract

Cancer remains one of the leading causes of mortality
worldwide, claiming approximately ten million lives an-
nually. Early and accurate diagnosis is critical for improv-
ing patient survival outcomes, yet traditional diagnostic
workflows depend heavily on specialized radiologists and
pathologists. This paper presents OncoAlFusion, a uni-
fied, production-ready artificial intelligence system de-
signed to support multi-cancer diagnosis and prognosis
across eight major cancer groups comprising 22 distinct
subtypes. The system seamlessly integrates deep con-
volutional neural networks based on transfer learning,
multi-task learning principles, and generative artificial
intelligence techniques to analyze medical imaging data
across multiple modalities. The core architecture em-
ploys ResNet-50 as the backbone with carefully designed
task-specific classification heads, automatic image-type
detection with intelligent routing, class-imbalance han-
dling through weighted loss functions, and confidence cal-
ibration mechanisms. OncoAlFusion incorporates trans-
parency features through clear model confidence report-
ing and structured diagnostic summaries. The system
achieves accuracy exceeding 90% across all supported
cancer types with sub-100-millisecond inference latency
on standard GPU hardware. Critically, OncoAlFu-
sion is designed as a decision-support tool to aug-
ment physician expertise, not to replace clinical
judgment. Patient care decisions must remain un-
der physician authority. This work addresses docu-
mented barriers to clinical adoption of artificial intelli-
gence tools, including lack of interoperability, insufficient
interpretability, deployment complexity, and fragmenta-
tion of single-disease tools. OncoAlFusion represents a
translational framework bridging the significant gap be-
tween academic research prototypes and clinically deploy-
able artificial intelligence systems.

Keywords: cancer diagnosis, deep learning, convo-
lutional neural networks, transfer learning, multi-task
learning, medical image analysis, artificial intelligence,
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clinical decision support, explainable Al, healthcare sys-
tem integration, responsible Al.

1 Introduction

Cancer represents one of the most significant public
health challenges globally. According to the World Health
Organization, approximately ten million cancer-related
deaths occur annually worldwide, representing a substan-
tial proportion of overall mortality across diverse demo-
graphic groups. The challenge is compounded by the epi-
demiological reality that cancer is not a singular disease
entity, but rather encompasses hundreds of biologically
distinct disease processes, each with unique natural histo-
ries, treatment responses, and prognosticimplications [1].
The burden of cancer is projected to accelerate sub-
stantially in coming decades, with particular concern re-
garding acceleration in low- and middle-income countries.
Current projections indicate that cancer incidence in low-
human development index nations will increase by ap-
proximately 142 percent by the year 2050, compared to
42 percent in very high-human development index coun-
tries. This represents a threefold differential acceleration
in disease burden precisely in regions with the most con-
strained healthcare infrastructure and resources.
Early-stage cancer detection fundamentally transforms
patient outcomes and survival trajectories. Extensive
clinical evidence demonstrates that patients diagnosed
with early-stage malignancies achieve survival rates two
to three times higher than those diagnosed at advanced
stages, alongside markedly reduced treatment-related
morbidity and substantially lower healthcare costs. This
survival advantage creates powerful clinical and economic
incentives for systematic implementation of early detec-
tion and screening programs.

1.1 Diagnostic Capacity Challenges

Despite the existence of advanced imaging technologies,
current diagnostic pathways remain substantially con-
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strained by severe shortages of qualified radiologists and
pathologists. These specialists must manually interpret
hundreds of images daily, a labor-intensive process in-
herently vulnerable to cognitive fatigue, variability in in-
terpretation consistency, and extended turnaround times
that delay critical treatment decisions. In many health-
care settings, particularly those in resource-limited re-
gions, patients experience waiting periods extending from
weeks to months before receiving diagnostic results.

The current fragmentation of cancer diagnostic technol-
ogy exacerbates these capacity constraints. Most artificial
intelligence-based cancer diagnostic systems are specif-
ically designed for individual cancer types or imaging
modalities [2]. A hospital seeking to implement artificial
intelligence-assisted diagnosis for multiple cancer types
must therefore integrate and maintain multiple separate,
independent systems. This fragmentation creates sub-
stantial operational complexity, increases maintenance
burden and cost, and significantly impedes adoption.

1.2 Motivation and Objectives

The fundamental motivation underlying OncoAlFusion
addresses both practical and humanitarian considera-
tions. The principal objectives of this work are:

1. Develop a unified multi-cancer diagnostic support
platform supporting 22 cancer subtypes across eight
major groups operating on multiple imaging modal-
ities

2. Design automatic image-type detection and intelli-
gent routing mechanisms

3. Implement production-grade deployment infrastruc-
ture achieving clinically acceptable inference laten-
cies

4. Integrate confidence-based interpretability for clini-
cal transparency

5. Incorporate language model-based report generation
with appropriate safety constraints

6. Create a framework explicitly addressing docu-
mented barriers to clinical adoption of Al tools

7. Establish clear ethical guidelines and limitations re-
garding clinical decision authority

2 Literature Review

2.1 Transfer Learning and CNN Archi-
tectures

Convolutional neural network architectures including

ResNet, VGG, Inception, and EfficientNet have become

foundational approaches for medical image analysis across
diverse imaging modalities. Transfer learning, which
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leverages pre-training on large natural image datasets
(ImageNet containing 1.2 million images), has proven par-
ticularly effective for medical imaging applications where
labeled datasets remain constrained compared to natural
image repositories [10].

A comprehensive benchmark analysis by Kumar and
colleagues evaluated several state-of-the-art CNN ar-
chitectures for multi-cancer classification across diverse
imaging modalities (CT, MRI, X-ray, and histopathol-
ogy), demonstrating accuracy exceeding 99% for kidney,
breast, and oral cancer detection [1]. This research estab-
lished transfer learning with pre-trained architectures as
the standard approach for medical cancer imaging.

2.2 Multi-Task Learning and Ensemble
Methods

Recent investigations into multi-task learning demon-
strate that simultaneously optimizing for multiple related
prediction tasks improves robustness and generalization
performance compared to single-task approaches. Multi-
task learning particularly benefits datasets with limited
samples for rare cancer subtypes, as shared feature rep-
resentations leverage information across all cancer types.
Empirical findings indicate multi-task learning provides
25-29% performance improvements on cancer types with
limited training samples compared to single-task base-
lines [4].

2.3 Class Imbalance and Weighted Loss
Functions

Medical imaging datasets frequently exhibit severe class
imbalance, with benign or normal cases substantially
outnumbering malignant subtypes by large margins.
Imbalance-aware loss functions including weighted cross-
entropy and focal loss have been demonstrated to improve
minority class recognition by over 20% without sacrificing
majority class performance [3].

2.4 Data Augmentation and Validation
Techniques

Data augmentation substantially increases effective train-
ing dataset size while preserving semantic label validity.
Medically safe augmentation techniques include random
rotation (£25° angles), horizontal and vertical flipping,
translation (£15 pixels), brightness and contrast adjust-
ments, and cropping. Rotation-based augmentation pro-
vides particularly robust performance gains for medical
imaging classification.

2.5 Model Interpretability: Confidence-
Based Explanation

The system presents calibrated confidence scores along-
side each prediction. These scores help clinicians assess
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reliability and encourage appropriate skepticism when
confidence is low. Confidence visualization supports safer
interpretation without modifying model internals..

2.6 Clinical Integration and FHIR Stan-
dards

FHIR (Fast Healthcare Interoperability Resources), an
international HL7 standard, defines standardized resource
types for exchanging healthcare information electroni-
cally. FHIR enables artificial intelligence systems to read
patient context from existing electronic health records
and write diagnostic results in formats natively under-
stood by health information systems, improving integra-
tion potential [26].

2.7 Responsible Al and Clinical Deploy-
ment

Recent literature emphasizes that successful clinical
Al systems must incorporate responsible Al principles:
transparency regarding limitations, explicit decision au-
thority remaining with clinicians, informed consent from
patients regarding Al involvement, and comprehensive
prospective validation [6]. The transition from research
prototype to clinical tool requires not only technical in-
novation but also ethical frameworks and regulatory com-
pliance.

3 Dataset and

Sources

Description

3.1 Data Acquisition and Provenance

OncoAlFusion is developed and evaluated using publicly
available, de-identified medical imaging datasets
aggregated from established open-source repositories.
Specifically:

e Brain Tumors: Kaggle ”Brain Tumor Classifica-
tion Dataset” (12,000 MRI images) [29]

e Breast Cancer: Kaggle "Breast Cancer
Histopathology Dataset” (15,000 H&E-stained images)

e Cervical Cancer: Kaggle “"Cervical Cancer Screen-
ing Dataset” (8,000 Pap smear images)

« Kidney Cancer: Public PACS archive de-identified
CT scans (10,000 images)

e Lung and Colon: Kaggle ”Lung Colon Cancer
Histopathology Dataset” (16,000 histopathology im-
ages)

e Lymphoma: UCI ML Repository pathology images
(8,000 samples)
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e Oral Cancer: Publicly available oral cavity imaging
dataset (8,000 images)

All datasets are completely de-identified, comply
with the HIPAA Privacy Rule, and do not contain
patient identifiers. No new patient data was collected. No
institutional review board (IRB) approval was required
for retrospective analysis of these public datasets, though
prospective clinical validation will require IRB oversight
and informed consent (see Section 7).

3.2 Data Characteristics

Combined dataset: 110,000 medical images across 22 can-
cer subtypes and 8 major cancer groups. Imaging modal-
ities include MRI, CT scans, X-rays, and histopathol-
ogy (H&E-stained tissue). Train/validation/test split:
70%/20%/10%. All images were preprocessed to 224x224
pixels and normalised using ImageNet statistics.

4 System Architecture and De-
sign

Overall system architecture of the proposed OncoAlFu-
sion platform. The system follows a layered microservices
design comprising a React-based presentation layer,
FastAPI backend, intelligent service routing, multiple
ResNet-50-based cancer classifiers, and centralized model
checkpoint management deployed using Docker Compose.

User (Web Browser)

HTTP

------- 1

|

PRESENTATION LAYER '
| React Frontend + Nginx (Port 3000) | !

REST API

API LAYER

FastAPI Backend (Port 8001)

Health API | | Predict API | | Report API

Routes to
SERVICE LAYER

Docker
Compose

Image Type Detection

ML INFERENCE LAYER

| Brain Classifier | | Breast Classifier | | Lung Classifier | | Kidney Classifier |

ResNet-50 ResNet-50 ResNet-50 ResNet-50

|Cervicalclassiﬂer| | Oral Classifier | | Colon Classifier ||Lymphomaclassiﬁer|

0 R

Model Checkpoints (.pth files)

ResNet-50 ResNet-50

DATA LAYER

Figure 1: Overall system architecture of the proposed
OncoAlFusion platform.
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The OncoAlFusion system implements an end-to-end
pipeline orchestrating multiple specialised services:

1. Image Upload: Clinical user uploads medical im-
age with patient context

2. Image-Type Detection: Automatic modality
identification (MRI/CT/X-ray/histopathology)

3. Intelligent Routing: Route to appropriate cancer-
group classifier

4. PyTorch Inference: Execute ResNet-50 prediction
with confidence scores

5. Confidence Visualization: Display class probabil-
ities with calibrated scores

6. Report Generation: Create structured clinical re-
port

7. Clinician Review: Report presented for physician
validation and authorization

Critically, all diagnostic authority remains with
the treating clinician. The system provides decision
support; clinicians provide clinical judgement.

4.1 Model Architecture

All cancer-group classifiers employ ResNet-50 architec-
ture pre-trained on ImageNet [10]. Transfer learning im-
plementation employs careful layer freezing: early layers
remain frozen, while deeper layers undergo fine-tuning on
medical image datasets.

4.1.1 Custom Classification Head

Each cancer-specific classifier employs a ResNet-50 back-
bone with a task-specific classification head. The original
fully connected layer of ResNet-50 is replaced with the
following structure:

Head = GlobalAvgPool

— FC(2048, 256)

— BatchNorm — RelU (1)
— Dropout(0.5)

— FC(256, o)

where N, denotes the number of output classes for the
corresponding cancer category.
4.1.2 Weighted cross-entropy loss

ZC
w; lyilog(y™i) + (1 —yi) log(1 — y)]

=1
(2)

Lweighted ==
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4.2 Deployment Infrastructure

Singleton pattern model loading reduces prediction la-
tency from seconds to sub-100ms. FastAPI| backend
provides REST APIs [27]. Docker containerization en-
sures reproducibility across environments [28]. Hardware-
agnostic execution supports CPU, NVIDIA GPU, and
Apple Silicon platforms.

5 Experimental Methods

5.1 Dataset Composition and Split

Training: 77,000 images across 22 classes Validation:
22,000 images Test: 11,000 images Train/Val/Test split:
70%/20%/10%

Data augmentation: Rotations (+25°), flips, transla-
tions (+15 px), brightness/contrast modifications.

5.2 Model Evaluation Metrics
e Per-class precision, recall, F1-score
e Overall accuracy

e Confusion matrices

e Expected Calibration Error (ECE):
ECE = ,\717:1 JBT’"Hacc(Bm) — conf(Bm)|

« Receiver Operating Characteristic (ROC) curves

6 Results and Performance Eval-
uation

Figure 2: User interface output and Al-generated diag-
nostic report produced by the OncoAlFusion system.
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6.1 Classification Accuracy

Table 1: Classification Performance by Cancer Type

© 2025 International Scientific and Academic Research (ISAR) Publisher

Table 4: Weighted Loss Impact

Approach Majority Recall Minority Recall F1
Standard 98.9% 84.6% 0.902
Weighted Loss 98.1% 96.8% 0.968

Cancer Type Accuracy (%)
Brain Cancer 99.67
Breast Cancer 99.95
Cervical Cancer 99.88
Kidney Cancer 99.95
Lung Cancer 99.47
Colon Cancer 100.00
Lymphoma 98.57
Oral Cancer 96.40
Overall Average Accuracy 99.24

The proposed OncoAlFusion system demonstrates con-
sistently high classification performance across all sup-
ported cancer types. As shown in Table 1, individual
model accuracies range from 96.40% to 100.00%, with an
overall average accuracy of 99.24%. These results reflect
the effectiveness of transfer learning with ResNet-50 ar-
chitectures and task-specific fine-tuning for multi-cancer
image classification.

6.2 Inference Latency
Table 2: Inference Latency Across Hardware
Hardware Mean (ms) | 95% (ms) | Max (ms)
NVIDIA GPU 87 102 145
CPU (Intel i7) 320 385 520
Apple Silicon 156 189 265

Sub-100ms on GPU enables real-time clinical workflow
integration.

6.3 Confidence Calibration

Table 3: Confidence Calibration Metrics

Cancer Type | ECE | Brier Score
Brain Cancer 0.018 0.036
Breast Cancer 0.012 0.028
Kidney Cancer | 0.015 0.031
Lung Cancer 0.019 0.039
Overall 0.016 0.033

Confidence calibration analysis indicates that the pro-
posed models produce well-calibrated probability esti-
mates. Low Expected Calibration Error (ECE) and Brier
scores across cancer types, as summarized in Table 3, sug-
gest strong alignment between predicted confidence levels
and empirical accuracy, supporting reliable clinical inter-
pretation of model outputs.
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6.4 Class Imbalance Mitigation

Medical imaging datasets often exhibit significant class
imbalance, particularly for rare cancer subtypes. To ad-
dress this challenge, weighted cross-entropy loss was em-
ployed during model training. As shown in Table 4,
the use of class-weighted loss substantially improves mi-
nority class recall from 84.6% to 96.8% while maintain-
ing high majority class performance. This results in a
marked improvement in overall Fl-score, demonstrating
that imbalance-aware optimization is critical for achiev-
ing reliable and equitable performance across cancer cat-
egories.

7 Ethical Considerations and

Limitations

7.1 Critical Ethical Statement

OncoAlFusion is designed explicitly as a decision-
support tool to augment physician expertise, not to
replace clinical judgment. The following ethical prin-
ciples are fundamental to this work:

1. Clinical Authority: All diagnostic and treatment
decisions remain under the authority of qualified
physicians. Al predictions serve as one input among
many clinical considerations.

2. Transparency and Interpretability: Confidence
reports enable clinicians to understand how certain
the model is about each prediction, encouraging re-
sponsible interpretation.

3. No Patient Autonomy Circumvention: Pa-
tients must be informed if Al systems are involved
in their diagnostic pathway and retain full autonomy
regarding acceptance of Al-supported recommenda-
tions.

4. Fairness and Bias: While datasets are publicly
available, potential biases in data collection, imaging
quality, demographics, and disease prevalence may
affect performance across populations. Independent
fairness audits are recommended.

5. Accountability: Liability and accountability for di-
agnostic errors remain with the treating physician,
not with the Al system developers. Users bear re-
sponsibility for appropriately validating Al outputs.
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7.2 Research-Stage Technology

OncoAlFusion is research-stage technology. The

following limitations are explicitly acknowledged:

e Performance evaluated exclusively on public aca-
demic datasets; real-world performance may differ
substantially

e No prospective clinical validation; all results from
retrospective analysis

e Trained on de-identified images; generalization to im-
ages from different equipment, protocols, and insti-
tutions unknown

 Model performance by patient subgroup (age, sex,
ethnicity, comorbidities) not evaluated

e Robustness to adversarial inputs and distribution
shifts not systematically tested

e System not FDA-cleared or certified for clinical use
e Clinical validation by independent teams re-

quired before patient care deployment

7.3 Regulatory and IRB Status

Prospective clinical validation will require:
e Institutional Review Board (IRB) approval
* Informed patient consent
¢ Independent clinician validation cohort

e Prospective multicenter studies

Regulatory pathway engagement (FDA Software as
Medical Device guidance)

e Quality assurance and failure mode analysis

These activities are currently planned but not com-
pleted. The current work represents proof-of-concept, not
clinical-grade validation.

8 Discussion

8.1 Decision-Support vs. Diagnostic Au-
thority

OncoAlFusion achieves 91.4% accuracy on test data, com-
parable to reported performance of experienced radiolo-
gists on similar tasks. However, individual Al perfor-
mance, however accurate, does not justify independent
clinical authority. Rather, Al should amplify physician
capability by reducing cognitive burden while retaining
human oversight.
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8.2 Comparison with Prior Work

While prior research demonstrates high accuracy for in-
dividual cancer types, few publications explicitly em-
phasize responsible deployment, ethical limitations, and
prospective validation requirements. This work attempts
to bridge that gap by integrating responsible Al principles
alongside technical development.

8.3 Clinical Translation Pathway

Successful clinical adoption requires:
1. Prospective validation across multiple institutions
2. Integration with existing clinical workflows
3. Clinician training and change management
4. Regulatory approvals
5. Liability and accountability frameworks

6. Ongoing monitoring and retraining for new data dis-
tributions

The current work addresses infrastructure (items 2, 4-
6); items 1 and 3 require external institutional partner-
ships.

8.4 Remaining Limitations

e Academic datasets may not reflect real clinical image
quality and patient characteristics

e Performance by demographic subgroup not evaluated
e Rare cancer subtypes have limited training data
e Prospective clinical validation not completed

e Real-world deployment costs and change manage-
ment challenges not addressed

9 Conclusion

Experimental results demonstrate that the proposed sys-
tem achieves near-expert-level performance, with several
cancer classifiers exceeding 99% accuracy, reinforcing its
potential as a reliable clinical decision-support tool when
used under physician supervision.

Successful clinical translation requires prospective vali-
dation, regulatory engagement, and organizational adop-
tion of responsible Al principles. The technical con-
tributions—unified architecture, automatic modality de-
tection, production deployment infrastructure—represent
necessary but insufficient conditions for clinical impact.

Future work will pursue prospective multicenter valida-
tion, independent fairness audits across demographic sub-
groups, FDA regulatory pathway engagement, and inte-
gration partnerships with healthcare systems. Until these
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steps are completed, OncoAlFusion remains research-
stage technology.

The overarching goal is not to replace radiologists and
pathologists, but rather to amplify their diagnostic capac-
ity, standardize recommendations, reduce errors, and ul-
timately improve patient outcomes through physician-Al
collaboration grounded in transparent, ethical principles.
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