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Abstract:

K-means clustering is widely used for its efficiency. However, this algorithm suffers from two
major drawbacks: first, the user must specifies in advance the correct number of clusters, which is generally a
difficult task; second, its final results depend on the initial starting points. The present paper intends to overcome
these issues by proposing a parameter free algorithm based on k-means (called pfk-means). We evaluated its
performance by applying on several standard datasets and compare with gmeans, a related well know automatic
clustering method. Our performance studies have demonstrated that the proposed approach is effective in
predicting the correct number of clusters and producing consistent clustering results.
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INTRODUCTION

In Data Mining, clustering consists of grouping a
given dataset into a predefined number of disjoint
sets, called clusters, so that the elements in the
same cluster are more similar to each other and
more different from the elements in the other
cluster. This optimization problem is known to be
NP-hard, even when the clustering process deals
with only two clusters (Aloise 1980). Therefore,
many heuristics and approximation algorithms
have been proposed, in order to find near optimal
clustering solution in reasonable computational
time. The most prominent clustering algorithm k-
means is a greedy algorithm which has two stages:
Initialization, in which we set the seed set of
centroids, and an iterative stage, called Lloyd’s
algorithm  (Lloyd., S. P.1982). Additionally,
Lloyd’s algorithm has two steps: The assignment
step, in which each object is assigned to its closest
centroid, and the centroid’s update step. The main
advantage of k-means is its fast convergence to a
local minimum, but k-means has two major
drawbacks: first, the user must specifies in
advance the correct number of clusters, which is
generally a difficult task; second, the algorithm is
sensitive to the initial starting points.

In this paper, an alternative parameter free method
for automatic clustering, called pfk-means, is

proposed. Algorithm validation and comparative
study with gmeans (Hamerly and Elkan 2003), a
related well known algorithm, are conducted
using several real-world and artificial clustering
data sets from the UCI Machine Learning
Repository ( Asuncion and Newman 2007).

In the next section, some related work are briefly
discussed. Then the proposed approach is
described in Section 3. Section 4 presents
applications results of this clustering method to
different standard data sets and reports its
performance. Finally, conclusion of the paper is
summarized in Section 5.

2. RELATED WORK

Despite the fact that obtaining an optimal number
of clusters k for a given data set is an NP-hard
problem (Spath 1980), several method have been
developed to find k automatically.

Pelleg and Moore (2000) introduced the X-means
algorithm, which proceed by learning k with k-
means using the Bayesian Information Criterion
(BIC) to score each model, and chooses the model
with the highest BIC score. However, this method
tends to overfit when it deals with data that arise
from non-spherical clusters. Tibshirani et al.
(2001) proposed the Gap statistic, which
compares the likelihood of a learned model with
the distribution of the likelihood of models trained
on data drawn from a null distribution. This
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method is suitable for finding a small number of
clusters, but has difficulty when k increases.
Cheung (2005) studied a rival penalized
competitive learning algorithm, and Xu ( 1997,
1996) has demonstrated a very good result in
finding the cluster number. Lee and Antonsson
(2000) wused an evolutionary method to
dynamically cluster a data set. Sarkaret al,.
(1997) and Fogel, Owens, and Walsh (1966) are
proposed an approach to dynamically cluster a
data set using evolutionary programming, where
two fitness functions are simultaneously
optimized: one gives the optimal number of
clusters, whereas the other leads to a proper
identification of each cluster’s centroid. Recently
Swagatam Das and Ajith Abraham (2008)
proposed an Automatic Clustering using
Differential Evolution (ACDE) algorithm by
introducing a new chromosome representation.
Hamerly and Elkan (2003) proposed the gmeans
algorithm, based on K-means algorithm, which
uses projection and a statistical test for the
hypothesis that the data in a cluster come from a
Gaussian distribution. This algorithm works
correctly if clusters are well-separated, and fails
when clusters overlap and look non-Gaussian. In
our experiments, gmeans tends to overestimate the
number of clusters, as reported in section 4.

The majority of these methods to determine the
best number of clusters may not work very well in
practice. In the present work, an alternative
approach is proposed, attempting to overcome
these issues.

3. Proposed approach

The proposed algorithm starts by setting
kmax=floor((n) 1/2), where n is the number of
objects in the given data set. This choice is
motivated by the fact that the number of clusters
lies in the range from 2 to )", as reported by
Pal and Bezdek (1995).

Then it applies a deterministic initialization
procedure proposed by Kettani et al. (2013)
(called KMNN ) by splitting the entire dataset into
two clusters. K-means algorithm is then applied
with these two initial centroids. Again, the largest

cluster is then split into two clusters by KMNN.
This process is repeated until k=kmax, and at each
iteration, the maximum of CH cluster validity
index (Calinski and Harabasz 1974) of the current
partition is stored. We used this index because it is
relatively inexpensive to compute, and it generally
outperforms other cluster validity indices as
reported by Milligan and Cooper (1985). Finally,
the algorithm outputs the optimal k and partition
corresponding to the maximum value of CH
stored so far. This algorithm is outlined in the
pseudo-code below:

Algorithm pfk-means

Input: X={x;,%,..., X, } in RY
k
QOutput: k mutually disjoint clusters Cy ..., Cysuch that U C;=X
=1

kmax <[ ()2 ]

[ml,m2] < KMNN(X,2)

ko <2

Io«1

mo < m

for h=2:kmax-1

j argMin( G;|)
i<=k
[p1,p2] <~ KMNN(C;,2)
m; < pl
My, <= p2
[I,m] < kmeans(X,h+1,'start',m)
if CHo <CH(I) then
ko «h+1
To«1
CHo < CH(I)
mo < m
end if
end for
Output: m, ko and Io

4 Experimental results

Algorithm validation is conducted using different
data sets from the UCI Machine Learning
Repository [10]. We evaluated its performance by
applying on several benchmark datasets and
compare with gmeans (Hamerly and Elkan 2003).
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Silhouette index (Kaufman and Rousseeuw 1995)
which measures the cohesion based on the
distance between all the points in the same cluster
and the separation based on the nearest neighbor
distance, was used in these experiments in order
to evaluate clustering accuracy. ( bigger average
silhouette value indicates a higher clustering
accuracy ). Silhouette index is based on distances
between observations in the same cluster and in
different clusters. Given observation i , let a; be
the average distance from point i to all other
points in same cluster and d [ i, j [ represents the
average distance from point i to all points in any
other cluster j Finally, let b; denotes the
minimum of these average distances d [ 1, j [] .
The silhouette width for the i-th observation is:

silh(i ) O (b; O a;))/max[ a;, b; [J
The average silhouette width can be find by

averaging silh(i ) over all observations:

In
silh [ — [ silh(i)

niftl
The silhouette width silh(i ) ranges from -1 to 1. If
an observation has a value close to 1, then the data
point is closer to its own cluster than a
neighboring one. If it has a silhouette width close
to -1, then it is not very well clustered. A
silhouette width close to zero indicates that the
observation could just belong to current cluster or
one that is near to it. Kaufman and Rousseeuw use
the average silhouette width to estimate the
number of clusters in a data set by using the
partition with two or more clusters that yields the
largest average silhouette width.
Experimental results are reported in table 1 and
figure 1, and some clustering results are depicted
in figure 2 to 7.

TABLE 1:Experimental results

of pfk-means

and gmeans

application on different datasets in term of average Silhouette

value.
gmeans pfk-means
Data set k k Meanssil. |k found |Mean
found sil.

Iris 3 |5 0.6744 3 0.7541
Ruspini 4 |5 0.8772 4 0.9086
Breast 2 139 0.2644 2 0.7541
Aggregation 7 13 0.6562 28 0.5662
Compound 6 |17 0.6193 2 0.8302
Pathbased 3 9 0.4499 12 0.5567
Spiral 3 13 0.5286 17 0.5344
D31 31 |31 0.9221 31 0.9221
RI15 15 | 16 0.9134 15 0.9360
Jain 2 |17 0.6006 14 0.6227
Flame 2 |4 0.6302 8 0.5572
Dim32 16 |54 0.6244 16 0.9961
Dim64 16 |49 0.8108 16 0.9985
Dim128 16 |47 0.8331 16 0.9991
Dim256 16 |48 0.755 16 0.9996
Dim512 16 |45 0.8200 |16 0.9998
Dim1024 16 |47 0.6654 16 0.9999
al 20 |56 0.6057 20 0.7891
a2 35 |74 0.6752 35 0.7911
a3 50 |94 0.6570 |50 0.7949
Thyroid 2 |10 0.4726 3 0.7772
Glass 7 |10 0.7263 15 0.6516
Wdbc 2 |28 0.8388 4 0.9983
Wine 3 13 0.5043 3 0.5043
Yeast 10 |55 0.4102 2 0.4102
S1 15 |87 0.5027 15 0.8802
S2 15 |87 0.5382 15 0.8008
S3 15 |85 0.5371 15 0.6661
S4 15 192 0.5471 15 0.6447
t4.8k 6 |108 0.5143 35 0.5774
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Fig 1: Chart of mean Silhouette index for both gmeans and pfk-means
applied on different datasets.
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Fig 2: Clustering results of Ruspini dataset using gmeans (on left) —
and pfk-means (on right)
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Fig 5: Clustering results of S2 dataset using gmeans (on left) and
ptk-means (on right)
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Fig 3: Clustering results of Dim32 dataset using gmeans (on left)
and pfk-means (on right)
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Fig 4: Clustering results of S1 dataset using gmeans (on left) and
pfk-means (on right)
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Fig 7: Clustering results of S4 dataset using gmeans (on
left) and ptk-means (on right)

S Conclusion

In this paper, a parameter free k-means algorithm
was suggested. We evaluated its performance by
applying on several standard datasets and compare
with gmeans. Our experimental study have
demonstrated that it is effective in producing
consistent clustering results and have found the
correct number of clusters with a successful rate
of 63.33%.

In future work, it will be of interest to find a
tighter upper bound on the number of clusters,
instead of n'”? , in order to reduce the number of
computations steps of the proposed approach.
Another possible enhancement will consist to
choose a more appropriate similarity measure
instead of Euclidian distance aiming to produce
more accurate clustering results.
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