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   INTRODUCTION 
In Data Mining, clustering consists of grouping a 

given dataset into a predefined number of disjoint 

sets, called clusters, so that the elements in the 

same cluster are more similar to each other and 

more different from the elements in the other 

cluster. This optimization problem is known to be 

NP-hard, even when the clustering process deals 

with only two clusters (Aloise 1980). Therefore, 

many heuristics and approximation algorithms 

have been proposed, in order to find near optimal 

clustering solution in reasonable computational 

time.  The most prominent clustering algorithm k-

means is a greedy algorithm which has two stages: 

Initialization, in which we set the seed set of 

centroids, and an iterative stage, called Lloyd’s 

algorithm  (Lloyd., S. P.1982). Additionally, 

Lloyd’s algorithm has two steps: The assignment 

step, in which each object is assigned to its closest 

centroid, and the centroid’s update step. The main 

advantage of k-means is its fast convergence to a 

local minimum, but  k-means has two major 

drawbacks: first,  the user must specifies in 

advance the correct number of clusters, which is 

generally a difficult task; second, the algorithm is 

sensitive to the initial starting points. 

In this paper, an alternative parameter free method 

for automatic clustering, called pfk-means, is  

 

 

 

proposed. Algorithm validation and comparative 

study with gmeans (Hamerly and Elkan 2003), a 

related well known algorithm, are conducted 

using several real-world and artificial clustering 

data sets from the UCI Machine Learning 

Repository ( Asuncion and Newman 2007). 

In the next section, some related work are briefly 

discussed. Then the proposed approach is 

described in Section 3. Section 4 presents 

applications results of this clustering method to 

different standard data sets and reports its 

performance. Finally, conclusion of the paper is 

summarized in Section 5. 

  2. RELATED WORK 

Despite the fact that obtaining an optimal number 

of clusters k for a given data set is an NP-hard 

problem (Spath 1980), several method have been 

developed to find k automatically. 

Pelleg and Moore (2000) introduced the X-means 

algorithm, which proceed by learning k with k-

means using the Bayesian Information Criterion 

(BIC) to score each model, and chooses the model 

with the highest BIC score. However, this method 

tends to overfit when it deals with data that arise 

from non-spherical clusters. Tibshirani et al. 

(2001) proposed the Gap statistic, which 

compares the likelihood of a learned model with 

the distribution of the likelihood of models trained 

on data drawn from a null distribution. This 
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method is suitable for finding a small number of 

clusters, but has difficulty when k increases. 

Cheung (2005) studied a rival penalized 

competitive learning algorithm, and Xu ( 1997, 

1996) has demonstrated a very good result in 

finding the cluster number.  Lee and Antonsson 

(2000) used an evolutionary method to 

dynamically cluster a data set. Sarkar,et al,. 

(1997) and Fogel, Owens, and Walsh (1966) are 

proposed an approach to dynamically cluster a 

data set using evolutionary programming, where 

two fitness functions are simultaneously 

optimized: one gives the optimal number of 

clusters, whereas the other leads to a proper 

identification of each cluster’s centroid. Recently 

Swagatam Das and Ajith Abraham (2008) 

proposed an Automatic Clustering using 

Differential Evolution (ACDE) algorithm by 

introducing a new chromosome representation.  

Hamerly and Elkan (2003) proposed the gmeans 

algorithm, based on K-means algorithm, which 

uses projection and a statistical test for the 

hypothesis that the data in a cluster come from a 

Gaussian distribution. This algorithm works 

correctly if clusters are well-separated, and fails 

when clusters overlap and look non-Gaussian. In 

our experiments, gmeans tends to overestimate the 

number of clusters, as reported in section 4.  

The majority of these methods to determine the 

best number of clusters may not work very well in 

practice. In the present work, an alternative 

approach is proposed, attempting to overcome 

these issues. 

3. Proposed approach 

The proposed algorithm starts by setting 

kmax=floor((n) 
1/2

), where n is the number of 

objects in the given data set. This choice is 

motivated by the fact that the number of clusters 

lies in the range from 2 to (n)
1/2

, as reported by 

Pal and Bezdek (1995). 

Then it applies a deterministic initialization 

procedure proposed by Kettani et al. (2013) 

(called KMNN ) by splitting the entire dataset into 

two clusters.  K-means algorithm is then applied 

with these two initial centroids. Again, the largest 

cluster is then split  into two clusters by KMNN. 

This process is repeated until k=kmax, and at each 

iteration, the maximum of CH cluster validity 

index (Calinski and Harabasz 1974) of the current 

partition is stored. We used this index because it is 

relatively inexpensive to compute, and it generally 

outperforms other cluster validity indices as 

reported by Milligan and Cooper (1985). Finally, 

the algorithm outputs the optimal k and partition 

corresponding to the maximum value of CH 

stored so far. This algorithm is outlined in the 

pseudo-code below: 

 

Algorithm pfk-means 

 
Input: X= {x1 , x2 , . . . , xn } in Rd  

                                                                                           k 

Output: k mutually disjoint clusters C1 ,..., Ck such that ∪ Cj =X 

                                                                                         j=1 

kmax ←  (n)1/2
  

[m1,m2] ← KMNN(X,2) 

ko ←2 

Io ← I 

mο ← m 

for h=2:kmax-1 

         j← argMin(Ci ) 
                i<=k 

         [p1,p2] ← KMNN(Cj,2) 

          mj ←  p1 

          mh+1 ←  p2 

          [I,m] ← kmeans(X,h+1,'start',m) 

          if CHo <CH(I) then  

  ko ←h+1 

  Io ← I 

  CHo ← CH(I) 

                        mο ← m 

 end if 

end for 
Output: m, ko and Io 

 

4  Experimental results 
Algorithm validation is conducted using different 

data sets from the UCI Machine Learning 

Repository [10]. We evaluated its performance by 

applying on several benchmark datasets and 

compare with gmeans (Hamerly and Elkan 2003). 
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Silhouette index (Kaufman and Rousseeuw 1995) 

which measures the cohesion based on the 

distance between all the points in the same cluster 

and the separation based on the nearest neighbor 

distance, was used in these experiments in order 

to evaluate clustering accuracy. ( bigger average 

silhouette value indicates a higher clustering 

accuracy ). Silhouette index is based on distances 

between observations in the same cluster and in 

different clusters. Given observation i , let ai be 

the average distance from point i to all other 

points in same cluster and d � i, j � represents the 

average distance from point i to all points in any 

other cluster j . Finally, let bi denotes the 

minimum of these average distances d � i, j � . 

The silhouette width for the i-th observation is: 

silh(i ) � (bi � ai)/max� ai , bi � 

The average silhouette width can be find by 

averaging silh(i ) over all observations: 

          1 n 

silh � − � silh(i ) 

          n i �1 

The silhouette width silh(i ) ranges from -1 to 1. If 

an observation has a value close to 1, then the data 

point is closer to its own cluster than a 

neighboring one. If it has a silhouette width close 

to -1, then it is not very well clustered. A 

silhouette width close to zero indicates that the 

observation could just belong to current cluster or 

one that is near to it. Kaufman and Rousseeuw use 

the average silhouette width to estimate the 

number of clusters in a data set by using the 

partition with two or more clusters that yields the 

largest average silhouette width. 

Experimental results are reported in table 1 and 

figure 1, and some clustering results are depicted 

in figure 2 to 7. 

 

 

 

 

TABLE 1:Experimental results of pfk-means and gmeans 

application on different datasets  in term of average Silhouette  

value. 

                 gmeans       pfk-means 

 

Data set k  k 

found 

Mean sil. k found Mean 

sil. 

Iris 3 5  0.6744 3  0.7541 

Ruspini 4 5  0.8772 4  0.9086 

Breast 2 39 0.2644 2 0.7541 

Aggregation 7 13  0.6562 28  0.5662 

Compound 6 17  0.6193  2  0.8302 

Pathbased 3 9  0.4499 12  0.5567 

Spiral 3 3  0.5286 17  0.5344 

D31 31  31  0.9221  31  0.9221 

R15 15  16  0.9134 15  0.9360 

Jain 2 17  0.6006 14  0.6227 

Flame 2 4  0.6302 8  0.5572 

Dim32 16 54  0.6244 16 0.9961 

Dim64 16 49  0.8108 16 0.9985 

Dim128 16 47 0.8331 16  0.9991 

Dim256 16 48  0.755 16  0.9996 

Dim512 16 45   0.8200 16  0.9998 

Dim1024 16 47 0.6654 16 0.9999 

a1 20 56  0.6057 20  0.7891 

a2 35 74  0.6752 35  0.7911 

a3 50 94   0.6570 50 0.7949 

Thyroid 2 10  0.4726 3 0.7772 

Glass 7 10  0.7263 15 0.6516 

Wdbc 2 28 0.8388 4 0.9983 

Wine 3 3 0.5043 3 0.5043 

Yeast 10 55 0.4102 2 0.4102 

S1 15 87 0.5027 15 0.8802 

S2 15 87 0.5382 15 0.8008 

S3 15 85 0.5371 15 0.6661 

S4 15 92 0.5471 15 0.6447 

t4.8k 6 108 0.5143 35 0.5774 

 

 

 

Fig 1: Chart of mean Silhouette index for both gmeans  and pfk-means 

applied on different datasets. 
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Fig 2: Clustering results of Ruspini dataset using gmeans (on left) 

and  pfk-means  (on right) 

 

Fig 3: Clustering results of Dim32 dataset using gmeans (on left) 

and  pfk-means  (on right) 

 

Fig 4: Clustering results of S1 dataset using gmeans (on left) and  

pfk-means  (on right) 

 

 

 

 

Fig 5: Clustering results of S2 dataset using gmeans (on left) and  

pfk-means  (on right) 

 

Fig 6: Clustering results of S3 dataset using gmeans (on left) and  

pfk-means  (on right) 
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 Fig 7: Clustering results of S4 dataset using gmeans (on 

left) and  pfk-means  (on right) 

 

5 Conclusion 
In this paper, a parameter free k-means algorithm 

was suggested.  We evaluated its performance by 

applying on several standard datasets and compare 

with gmeans. Our experimental study have 

demonstrated that it is effective in producing 

consistent clustering results and have found the 

correct number of clusters with a successful rate 

of 63.33%. 

In future work,  it will be of interest to find a 

tighter upper bound on the number of clusters, 

instead of  n
1/2 

, in order to reduce the number of 

computations steps of the proposed approach. 

Another possible enhancement will consist to 

choose a more appropriate similarity measure 

instead of Euclidian distance aiming to produce 

more accurate clustering results. 
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