International Journal of Computer Science Engineering Techniques — Volume 9 Issue 6,
November - December - 2025

Hybrid Autonomous Unmanned Aerial Vehicle with Adaptive
Task Allocation and Peer-to-Peer Communication for
Surveillance Monitoring System

Manikandan.S!, Annapoorani.M?, Marikkannan.M?3
'M.E. Computer Science and Engineering (PG Scholar), Department of CSE, Government College of Engineering, Erode, Tamil Nadu, India.
23 Assistant Professor (Senior), Department of CSE, Government College of Engineering, Erode, Tamil Nadu, India
'manikanmani2000@gmail.com

Abstract - In the context of rapidly advancing smart city infrastructure and disaster management systems, autonomous aerial platforms have
emerged as pivotal tools for real-time monitoring, anomaly detection, and adaptive decision-making. This study presents a Hybrid
Autonomous Unmanned Aerial Vehicle (UAV) Framework that incorporates decentralized multi-UAV coordination, dynamic task allocation,
and peer-to-peer communication to achieve resilient and intelligent surveillance operations. Unlike conventional centralized control
mechanisms, the proposed system adopts a distributed intelligence model, enhancing fault tolerance, scalability, and energy efficiency under
varying environmental conditions. Each UAV in the network is equipped with multimodal sensing units, integrating YOLO-based visual object
detection for identifying vehicles, humans, animals, and abnormal events, along with acoustic anomaly recognition to improve environmental
perception. The drones collaboratively perform surveillance tasks through an adaptive task allocation mechanism, redistributing workloads
according to energy constraints, detection relevance, and spatial coverage requirements. Peer-to-peer communication facilitates real-time
information sharing and cooperative path optimization without the need for a central processing node. For navigation and swarm control, the
framework combines an Improved Artificial Potential Field (APF) for obstacle avoidance, Bidirectional RRT* for path optimization, and
reinforcement learning algorithms to refine coordination strategies through experience-based adaptation. The proposed design would be
implemented and validated in simulation environments thereby, it addresses the key challenges in urban surveillance, including coverage gaps,
energy-aware coordination, and distributed decision-making. It offers a scalable and modular foundation for traffic monitoring, crowd
analysis, and emergency management, contributing to the advancement of intelligent UAV-based surveillance architectures.
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1. Introduction

Unmanned Aerial Vehicles (UAVs) have emerged as a
cornerstone technology in contemporary surveillance and
monitoring systems, owing to their adaptability, autonomy, and
capacity to execute complex tasks in dynamic and hazardous
environments. The integration of Artificial Intelligence (AI) and
Machine Learning (ML) has significantly enhanced UAV
capabilities in real-time anomaly detection, path planning, and
adaptive task allocation, rendering them highly effective for both
civilian and defence applications. Early research primarily
concentrated on establishing secure communication frameworks
essential for reliable UAV swarm operations. [19] introduced an
enhanced real-time crowd anomaly detection model utilizing
YOLOVS, which demonstrated superior accuracy in identifying
abnormal behaviours in densely populated environments.
Concurrently, [10] addressed the security and privacy challenges
inherent in Internet of Drones (IoD) systems, emphasizing the
necessity for encrypted communication and secure coordination
among drone networks. Subsequent investigations expanded into
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distributed task allocation and swarm coordination. [18] proposed
a networked evolutionary game-theoretic model for dynamic task
allocation within UAV swarms, highlighting adaptive behaviour
and cooperative decision-making. Similarly, [9] explored the
synergy between federated learning and digital twins to enhance
energy-efficient task allocation and facilitate seamless service
migration, introducing the concept of self-adaptive mission
management.

Advancements in path planning have also been significant.
[13] developed an improved Continuous Ant Colony Optimization
(IACO) algorithm for UAV path planning in complex
environments, achieving efficient obstacle avoidance and reduced
computational overhead. [15] introduced a 3D path planning
methodology that integrates an improved Artificial Potential Field
with bidirectional Rapidly-exploring Random Tree Star (RRT*),
enhancing real-time obstacle avoidance. [17] proposed the
Artificial Fish Swarm Algorithm (AFSA) for 3D path optimization,
yielding faster convergence and smoother trajectories.
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In the realm of mission coordination and communication, [7]
addressed distributed task allocation under limited communication
constraints, proposing algorithms that optimize energy and time
efficiency. [4] furthered this by implementing ML-based
communication models for UAV swarms in search-and-rescue
missions, enhancing cooperative behaviour in challenging terrains.
[5] contributed a secure communication framework tailored for
autonomous drone swarms in surveillance operations, ensuring
robust and private inter-UAV data exchange.

Recent developments in real-time visual surveillance have
leveraged deep learning architectures. [2] employed Video Swin
Transformer models to detect violent behaviours and analyse
crowd density with high efficiency. [3] proposed a Transformer-
based spatiotemporal attention framework for unsupervised video
anomaly detection on large-scale datasets. [21] demonstrated the
effectiveness of YOLO-based panoramic surveillance systems in
burglary detection, significantly improving situational awareness
and visual coverage in expansive areas.

Contemporary research emphasizes Runtime Anomaly
Detection (RADD) and Adaptive Swarm Intelligence (ASI). [22]
introduced an integrated rule-mining and unsupervised learning
approach for real-time drone anomaly detection, enabling self-
corrective responses to abnormal flight behaviours. [23] extended
this work by implementing adaptive Particle Swarm Optimization
(PSO) for autonomous swarm anomaly tracking in dense
vegetation, achieving robust detection under occluded conditions.
Collectively, these studies underscore the progressive evolution of
UAV technologies from foundational communication and path
optimization to advanced intelligent perception and cooperative
autonomy. The convergence of deep learning-based perception
(e.g., YOLO, Transformers), optimization algorithms (e.g., ACO,
AFSA), and distributed learning paradigms (e.g., Federated
Learning, Game-Theoretic Models) lays the groundwork for the
development of Adaptive UAV Surveillance Monitoring Systems
with Task Allocation. These systems are poised to deliver
autonomous decision-making, efficient communication, and
intelligent anomaly response capabilities in real-world
surveillance scenarios.

2. Related Works

2.1. Real-Time Visual Surveillance and Anomaly Detection
Recent advancements in deep learning have significantly
enhanced UAV-based visual surveillance. [1] proposed Anomaly
Detection Network using Transformers (ANDT), a Transformer-
based model for detecting anomalies in aerial videos, leveraging
long-term temporal dependencies and prediction error analysis. [2]
utilized Video Swin Transformers to analyse crowd size and
violence levels, integrating optical flow and crowd counting maps
for spatial-temporal modelling. [3] introduced a spatiotemporal
attention framework using Vision Transformers (ViT) for
unsupervised anomaly detection, achieving superior generalization
on large-scale datasets. [21] developed a YOLO-based panoramic
surveillance system for burglary detection, improving situational
awareness in residential environments. [19] enhanced YOLOvVS
with Soft-Non-Maximum Suppression (NMS) and multi-scale
feature fusion for real-time crowd anomaly detection in dense
scenarios. [20] presented a YOLOvll-based framework for
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airborne vehicle detection under occlusion and altitude variation,
demonstrating high precision in complex environments.

2.2. Runtime Anomaly Detection and Adaptive Swarm

Intelligence

[22] introduced RADD, a runtime anomaly detection
framework integrating rule mining and unsupervised learning,
enabling UAVs to self-correct abnormal flight behaviours. [23]
developed an autonomous drone swarm system using adaptive
particle swarm optimization for anomaly tracking in dense
vegetation, achieving robust detection under occluded conditions.
[8] addressed chaotic behaviour in drone swarms using CNNs and
chaotic attractor models, enabling corrective trajectory generation
and maintaining coordinated flight under unstable conditions.

2.3. Distributed Task Allocation and Swarm Coordination

Efficient task allocation is essential for scalable UAV swarm
operations. [7] proposed a two-stage distributed auction-based
algorithm using Bernoulli communication models to simulate
message loss and optimize task assignment. [18] introduced a
networked evolutionary game-theoretic framework with time-
variant log-linear learning for adaptive decision-making in
dynamic environments. [9] combined Federated Learning and
Digital Twin technologies to enable energy-aware task allocation
and seamless service migration, improving operational efficiency
and reliability. [11] applied multi-agent deep deterministic policy
gradients (MADDPG) for decentralized UAV swarm coordination,
optimizing coverage and obstacle avoidance.

2.4. Path Planning and Environmental Navigation

Path optimization remains a core challenge in UAV
autonomy. [13] enhanced continuous Ant Colony Optimization
(ACO) with Q-learning for dynamic strategy selection in complex
3D environments. [15] proposed Bi-APF-RRT, a hybrid algorithm
combining artificial potential fields with bidirectional RRT for
efficient and safe navigation. [17] introduced an Improved
Artificial Fish Swarm Algorithm (IAFSA) to overcome local
optima and improve convergence speed. Modelled uncertainties in
obstacle positions and UAV states, comparing A* and RRT
algorithms under dynamic conditions. [14] integrated path
planning and task scheduling using hybrid planners and Shortest
Processing First (SPF) scheduling, demonstrating improved
mission time and energy efficiency.

2.5. Mission Coordination and Communication Efficiency

Robust communication frameworks are vital for coordinated
UAYV missions. [4] developed a machine learning—based model
combining Random Forest regression and clustering for swarm
formation prediction in Search and Rescue (SAR) operations. [5]
proposed a mesh-based secure communication framework using
Delaunay triangulation and encryption to resist cyber threats. A
multi-functional Internet of Things (IoT)-enabled UAV system [6]
integrated human detection, fire extinguishing, obstacle avoidance,
and air-quality monitoring for autonomous disaster response. [12]
enhanced drone detection via acoustic signatures and ML-based
audio augmentation, improving classification under noisy
conditions. [10] provided a comprehensive taxonomy of IoD
security challenges, proposing layered defences including
cryptography, intrusion detection, and blockchain.
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2.6. Swarm Coordination and Multimodal Surveillance

[24] provide a comprehensive review of UAV swarm
architectures, emphasizing decentralized coordination, adaptive
task allocation, and secure mesh-based communication. [25]
present a systematic review of smart surveillance technologies,
highlighting the integration of multimodal sensing, real-time
anomaly detection, and Docker-based simulation environments.
These insights directly support the proposed system’s use of
YOLOVS for object detection, acoustic anomaly recognition, and
Gazebo-PX4 simulation workflows.

2.7. Existing Challenges
2.7.1 Limitations in Scalable Scene Understanding
Transformer-based models such as ANDT [1], Swin
Transformer [2], and ViT-STR [3] have improved anomaly
detection in aerial and crowd surveillance. However, they often
require high computational resources and struggle with real-time
deployment in dynamic environments. YOLO-based systems [4][5]
offer faster detection but face limitations in panoramic coverage,
occlusion handling, and precision under variable lighting
conditions.

2.7.2 Gaps in Autonomous Behavioural Correction

Runtime anomaly detection frameworks like RADD [22]
and adaptive swarm tracking systems [23] provide mechanisms for
identifying abnormal drone behaviour. Yet, they lack integration
with swarm-level coordination and fail to trigger adaptive
responses. Chaos mitigation strategies using CNNs and attractor
models [8] remain underexplored in multi-agent missions, limiting
their practical deployment.

2.7.3 Constraints in Decentralized Task Distribution

Distributed task allocation algorithms [7][18] often
assume ideal communication and static environments. Federated
Learning and Digital Twin integration [9] offer decentralized
learning but are computationally intensive and rarely adapted for
real-time UAV  swarms. Reinforcement learning-based
coordination [11] improves adaptability but lacks modularity for
heterogeneous drone roles and dynamic task reassignment.

2.7.4 Inflexibility in Navigation Under Uncertainty

Path planning algorithms such as TACO [13], Bi-APF-
RRT* [15], and IAFSA [17] enhance obstacle avoidance and
convergence but typically operate under static assumptions.
Uncertainty modelling [16] and integrated path-scheduling
frameworks [14] are underutilized in swarm contexts, limiting
their effectiveness in unpredictable or cluttered environments.

2.7.5 Vulnerabilities in Swarm Communication and Data

Integrity

ML-based communication models [4], mesh networks [5],
and IoT-enabled systems [21] improve resilience but are often
tested only in simulation. Acoustic detection frameworks [12] and
IoD security taxonomies [10] offer partial solutions but lack
integration with swarm-level coordination and fail to scale
securely across large networks.

2.7.6 Traffic Zone Surveillance and Public Transparency
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Urban traffic surveillance systems face a range of persistent
challenges that hinder their effectiveness in anomaly detection,
public accountability, and real-time response. One of the most
critical limitations is inadequate coverage caused by static camera
infrastructure. Fixed-position CCTV units often suffer from blind
spots and limited field-of-view, making it difficult to monitor
intersections, pedestrian zones, or areas obscured by vehicles. As a
result, dynamic anomalies such as jaywalking, illegal turns, or
stray animals frequently go undetected.

3. Proposed Model

This paper outlines the conceptual design of a hybrid
autonomous UAYV surveillance system that integrates adaptive task
allocation, peer-to-peer communication, and multimodal anomaly
detection. The proposed architecture is intended for simulation-
based validation and serves as a foundation for future real-world
deployment.

Fig. 2 illustrates a conceptual framework for a drone-based
smart traffic management system for emergency response, the
workflow starts when a monitoring drone detects the accident and
immediately sends an Alert Notification to the Base and Control
Station. Crucially, this monitoring drone then automatically sends
a request directly to nearby drones via Peer-to-Peer
Communication to coordinate support, bypassing the Control
Station for immediate response. The nearest drone with a low-
priority task responds to assist, autonomously managing the scene.

Fig. 3 describes a high-traffic urban intersection monitored
by a drone using YOLO object detection. It includes bounding
boxes for vehicles, pedestrians, motorcycles, buses, and a stray
dog all labeled with confidence scores from a top-down aerial
perspective.

3.1. Conceptual Overview

The proposed system, titled Hybrid Autonomous Unmanned
Aerial Vehicle (UAV) with Adaptive Task Allocation and Peer-to-
Peer Communication for Surveillance Monitoring, envisions a
decentralized, intelligent UAV swarm capable of performing real-
time surveillance and anomaly response. The design eliminates the
need for a centralized controller by enabling drones to coordinate
autonomously through peer-to-peer (P2P) communication
protocols.
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Fig. 3 YOLO based Object Detection model

Fig. 1 describes the system architecture of the autonomous
operational cycle of a single drone node within a swarm system,
beginning with Load system configuration and Initialize drone
swarm nodes. The process moves into an Environment phase
where raw sensor inputs like Vision and Audio are fed into a
Fusion Node and integrated with the drone's Config and Location
data. The resulting fused data enters the Monitoring phase for
analysis, using modules like Object Detection and Anomaly

Detection to decide on required actions via the Adaptation module.

Finally, the Mission Completion phase executes the determined
response, which includes sending an Alert to the base station and
coordinating with other drones through P2P Communication and
Adaptive Task allocation before logging the results and reaching
the END of the cycle.

3.2. Multimodal Perception and Anomaly Detection

Each UAV in the swarm is conceptually equipped with
visual and acoustic sensors to enhance situational awareness. A
YOLOvS8-based object detection model [5][19] is proposed for
identifying and tracking anomalies such as intrusions or crowd
irregularities. Complementary acoustic anomaly detection [12] is
envisioned to support detection in occluded or low-visibility
environments. These modules are intended to operate in parallel,
enabling drones to respond dynamically to visual and auditory
cues.
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3.3. Adaptive Task Allocation Strategy

The system incorporates a distributed task allocation
mechanism inspired by auction-based [7] and game-theoretic
models [18]. Each UAV evaluates its suitability for tasks—such as
area scanning, anomaly tracking, or perimeter monitoring—based
on local context (e.g., battery level, proximity, sensor availability).
A negotiation protocol enables autonomous role assignment
without centralized oversight, improving resilience and scalability.

3.4. Peer-to-Peer(P2P) Communication Framework

To support decentralized coordination, the architecture
proposes a lightweight, encrypted P2P communication layer.
Drawing from mesh-based secure networking [5] and swarm
communication models [4], this framework is designed to
facilitate real-time data exchange, task negotiation, and anomaly
broadcasting among UAVs. MQTT or Data Distribution Service
(DDS)-based protocols are considered for simulation, with future
extensions to secure mesh topologies.
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Fig. 4 describes the P2P communication system of a drone
swarm system involving four individual drones (Drone 1 through
Drone 4) and a Base and Control Station. The primary mode of
communication is characterized by a hybrid model, the solid
yellow lines show a centralized communication link where all four
drones directly report to or receive commands from the Base and
Control Station; simultaneously, the dashed blue lines labelled
"P2P" (Peer-to-Peer) indicate decentralized communication
links allowing the drones to communicate directly with each other
to exchange data, coordinate tasks, and manage the swarm
autonomously without continuous relay through the central base.

3.5. Path Planning and Navigation Logic

For autonomous navigation, the system conceptually
integrates a hybrid path planning module combining Improved
Artificial Potential Field (APF) and Bidirectional RRT*
algorithms [15]. These planners are selected for their ability to
handle 3D obstacle-rich environments and dynamic replanning.
The design assumes integration with simulated sensor feedback in
Gazebo to validate obstacle avoidance and trajectory optimization
[13][16][17].

3.6. Reinforcement Learning for Swarm Behaviour

To enhance coordination efficiency, the system proposes the
use of multi-agent reinforcement learning (MARL), particularly
Deep Deterministic Policy Gradients (DDPG) [11]. This module is
intended to train UAVs in simulated environments to learn
cooperative behaviours such as formation flying, adaptive
coverage, and collision avoidance. Reward functions will be
designed around mission efficiency, energy conservation, and
anomaly response time.

3.7. Simulation-Driven Validation

The system is currently under development in a simulated
environment using Gazebo and PX4, with Docker-based
modularization for reproducibility. Custom world files simulate
urban and emergency scenarios, allowing for the evaluation of
detection accuracy, task distribution efficiency, communication
latency, and navigation robustness. While full implementation
may extend beyond the current submission timeline, the
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conceptual framework is validated through scenario-based
simulations and literature-backed design choices.

3.8. Application Scope
The proposed architecture is intended for applications in:
e Urban surveillance and smart-city monitoring.
e Disaster response including search-and-rescue and fire
detection.
e Traffic and crowd management using multimodal sensing.

4. Mathematical Formulations of the Proposed
System

The proposed conceptual framework integrates multimodal
anomaly detection, adaptive task allocation, decentralized
communication, and intelligent path planning. The following
mathematical models represent the core components of the system.

4.1. Anomaly Detection via Prediction Error
To identify anomalies in video sequences, the system
compares predicted and actual frames. Let be the input frame at
time , and .be the predicted next frame. The anomaly score
is computed as:

An anomaly is flagged when:

>

where is a predefined threshold. This approach aligns with
Transformer-based anomaly detection models [1][3].

4.2. Adaptive Task Allocation Using Utility-Based Negotiation
Each UAV  evaluates its utility  for task  based on

distance , battery level , and sensor capability
1
= —+ +
where , , are weighting coefficients. The task is assigned to the

UAYV with the highest utility:

- arg max

This decentralized allocation reflects auction-based and game-
theoretic models [7][18].

4.3. Peer-to-Peer(P2P) Communication Model

Let = ( , )be the communication graph, where is the
set of UAVs and  represents active communication links. Each
UAYV maintains a local state = and updates it based on neighbour
states:

(+H=CO{ 0O Ob
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where () is the set of neighbours of UAV , and is a
consensus or update function [4][5].

4.4. Path Planning Using Hybrid APF-RRT*
The Artificial Potential Field (APF) defines attractive and
repulsive forces:

total —  att + rep

with:

att = att (goal_ )

RRT* refines the path by minimizing cost:

()= min [ ( )+ Cost( )]
)

This hybrid approach ensures efficient and safe navigation in 3D
environments [13][15].

4.5. Reinforcement Learning for Swarm Coordination
Each UAV agent learns a policy (  )to select action
given state . The objective is to maximize expected cumulative

reward:
()= [ ( )l
=0

References

where ()is the reward at time , and [0,1]is the discount
factor. This supports cooperative behaviors such as formation
flying and adaptive coverage [11].

S. Conclusion and Future Work

This paper presents a conceptual framework for a hybrid
autonomous UAV system designed for intelligent surveillance
monitoring. The proposed architecture integrates adaptive task
allocation, peer-to-peer communication, and multimodal anomaly
detection to enable decentralized, scalable, and energy-aware
aerial monitoring. The system design leverages YOLO-based
visual recognition and audio anomaly classification, coordinated
through MQTT-based communication and hybrid path planning
strategies including Improved APF, Bidirectional RRT*, and
adaptive reinforcement learning. The design emphasizes
modularity, transparency, and real-world applicability, targeting
use cases in smart-city surveillance, disaster response, and security
monitoring. This conceptual model lays the groundwork for future
simulation, validation, and deployment. The proposed Hybrid
Autonomous UAV System currently represents a conceptual
framework aimed at addressing the key challenges of
decentralized aerial surveillance and adaptive mission control.
Future research would focus on transforming this design into a
fully functional simulation environment where the mechanisms for
multi-drone coordination, adaptive task allocation, and peer-to-
peer communication would be systematically validated under
dynamic and controlled conditions. Also, planned field trials
would focus on evaluating the system’s operational performance
in traffic surveillance, crowd monitoring, and emergency response
applications, thereby bridging the gap between simulation and
practical implementation in intelligent aerial monitoring systems.
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