ANALYSIS OF AVAILABILITY AND USE OF AUTONOMOUS SYSTEM AS PREDICTORS OF ICT LITERACY AMONG HEALTH WORKERS

Oladapo, Kayode Abiodun¹, Fagbenjo, Opeyemi Comfort², Mesioye, Ayobami Emmanuel^{3*}, Oyedele, Oluwasanya⁴, Jacobs, Oluwakemi Omowunmi⁵

¹Department of Computer Science, McPherson University, Seriki Sotayo, Ogun State, Nigeria

oladapoka@mcu.edu.ng¹, <u>fagbenjocomfort@gmail.com</u>², <u>mesioyeae@mcu.edu.ng</u>³, oyedeleo@mcu.edu.ng⁴, <u>oluwakemijacobs3@gmail.com</u>⁵.

*Corresponding author

Abstract

The growing integration of artificial intelligence and robotics has transformed healthcare operations and patient care. However, access to autonomous systems does not automatically enhance the digital competence of healthcare workers, creating a critical knowledge gap. This study examined the effect of availability and active use of autonomous systems on ICT literacy among healthcare workers in Akinyele Local Government Area, Ibadan, Nigeria. A quantitative descriptive survey design was adopted, and 158 healthcare workers were selected from public and private hospitals using proportional stratified sampling. Data were collected via a validated Google Form questionnaire, and instrument reliability was established using Cronbach's Alpha. Descriptive statistics and Ordinary Least Squares (OLS) regression were used for analysis. Results revealed low mean scores for availability (M = 1.86) and use (M = 1.88) of autonomous systems in public hospitals. Regression findings showed that availability and use significantly predicted ICT literacy, explaining 58.1% of its variance (R² = 0.581, p < 0.05). These findings imply that access alone is insufficient; active utilization and training are essential to improve digital competency. The study concludes by recommending targeted policies that promote not only provision but effective adoption of autonomous technologies to build a digitally skilled healthcare workforce.

Keywords: ICT literacy, Autonomous systems, Healthcare workers, Technologies, Digital tools

Introduction

The advancements introduced by Artificial Intelligence (AI) and sensor technologies are responsible for the rapid evolution experienced in the field of autonomous systems. An autonomous system – a system that operates with minimal human intervention encompasses a wide range of applications, which include self-driving cars, drones, and robots, all of which have moved from conceptual stages to real-world applications (Takahashi *et al.*, 2023). This technological shift towards autonomy is reshaping industries such as healthcare, transportation, and manufacturing, thereby introducing benefits such as improved safety, efficiency, accessibility, and more cost-effective measures. These systems integrate advanced technologies to perceive and navigate their environments autonomously (Zhang *et al.*, 2022). Autonomous robots in healthcare have shown great promise recently as robotic surgical systems as well as support care for the vulnerable patients and the elderly. Additionally, the advent of the COVID-19 pandemic has increased the demand for autonomous robots especially in healthcare and service industries where they assisted in cleaning, delivering supplies, and reducing the risk of virus transmission. Likewise, the deployment of autonomous system in health sector has also mitigated the shortage of qualified healthcare workers, assisted overworked medical professionals, an improved the quality of healthcare (Anderson & Chen, 2020).

²Department of Computer Science, National Open University, Nigeria

³Department of Cybersecurity, McPherson University, Seriki Sotayo, Ogun State, Nigeria

⁴Department of Software Engineering², McPherson University, Seriki Sotayo, Ogun State, Nigeria ⁵University of the People, California, USA.

The integration of autonomous systems, including artificial intelligence and robotics, into healthcare has significantly transformed patient care and operational efficiency. These technologies perform tasks such as patient monitoring, diagnostic support and administrative functions thereby, reducing the workload on healthcare workers. For instance, AI-driven tools assist in automated routine tasks, allowing clinicians to focus more on taking care of patient (Jiang *et al.*, 2023).

However, despite the recognized importance of autonomous systems in the health sector, the acceptance of AI and ICT literacy among healthcare professionals is vital to its success. The relationship between the availability of autonomous systems and ICT literacy among health workers is cumbersome and complicated as access to advanced technologies alone does not guarantee their effective use. For effective and efficient use of the systems, healthcare professionals must acquire the requisite skills and confidence to operate them (Garcia *et al.* 2023). With the rapid and continuous integration of autonomous systems in healthcare to enhance patient care and operational efficiency, the successful adoption of these technologies is contingent upon healthcare workers' Information and Communication Technology (ICT) literacy. Hence, the need to investigate the relationship between the availability and use of autonomous systems and ICT literacy among health workers.

The remainder part of this paper is organized as follows: Section 2 reviews related work, Section 3 the methodology deployed. Section 4 presents the results and discussion and Section 5 concludes the paper and suggests future research directions.

2. Related Work

The presence of autonomous systems in healthcare settings necessitates a certain level of ICT literacy among health workers. This statement was supported by (Shiferaw *et al.*, 2020) which conducted a study on a low-income country setting and discovered that healthcare providers' digital competency was influenced by the availability of digital tools and infrastructure. The study highlighted that limited access to autonomous systems hindered the development of ICT skills among health professionals. Similarly, research conducted in Portharcourt Metropolis revealed a poor level of ICT knowledge among health centre workers, with an aggregate of 41.39% correct responses on ICT knowledge assessments. The study emphasized the need for increased availability and training on ICT tools to improve literacy levels (Advance Scholars Publications, 2025).

Also, in agreement to the statement – Active engagement with autonomous systems can enhance ICT literacy among health workers, a study was conducted by (Kuek & Hakkennes, 2020). The United Theory of Acceptance and Use of Technology (UTAUT) model is employed in the study to demonstrate that healthcare staff who regularly use information systems exhibited digital literacy levels and more positive attitudes towards technology. The results indicated that performance expectancy and effort expectancy were significant predictors of technology use, which in turn correlated with ICT literacy. Furthermore, research by Ovwasa (2022) focusing on nurses in a Nigerian teaching hospital found that performance expectancy were the most rated factors influencing nurses' use of nursing informatics technologies. The study recommended adopting models that measure nurses' perceptions of technology use of identify reasons for acceptance or rejection and to enhance ICT literacy through adequate training.

The relationship between training in autonomous systems and ICT literacy is well-documented. Ma *et al.*, (2024) reviewed AI competencies for medical students. The research highlighted the essence of a structured training program in building confidence in the use of AI tools. An AI literacy framework that emphasized the need for personalized education strategies to build an AI-competent healthcare workforce was designed and deployed. Wong *et al.*, (2014) in their research work discovered that self-efficacy and

confidence in learning new ICT skills are two important factors associated with students' attitudes towards the use of e-health. In their findings, successful implementation of e-health initiatives is largely possible through self-efficacy in training.

Ali et al., (2023) conducted a systemic review on the integration of AI in health systems and the role of individuals within the system in adoption. This study highlighted the black box challenge in the acceptance of AI models in healthcare decision-making and the need for coexistence between workers and AI in an evolving healthcare workplace. Petersson et al., (2022) in their study discussed the models and frameworks that could facilitate the AI adoption process in healthcare. The study highlighted the lack of informed investigation in understanding the AI acceptable level among patients, health workers, and policymakers. Moreover, the ethical challenges, such as accountability, privacy, and transparency, were examined by Secinaro et al., (2021) in their structural review of the role of AI in healthcare. The adoption of AI in healthcare organizations has established a new avenue for research exploration, bringing several opportunities and challenges for industry and academia alike.

3. Methodology

In this study, a descriptive survey design, which is a quantitative research was employed. The target population consists of all hospitals (private and public) and healthcare workers in Akinyele Local Government Area, Ibadan, Oyo State. The L.G.A. consists of seventy-four (74) hospitals, with a population of 1,488 workers, comprising thirty-three (33) public and forty-one (41) private hospitals, with populations of 659 and 729, respectively. This study adopted a proportional stratified sampling technique in selecting the actual sample size. In this research, 20% of each stratum was selected, producing 7 public and 8 private hospitals. However, in selecting the actual sample size (healthcare workers) for this study, 50% of the staff of the participating hospital were used as the respondents to the research instruments.

A structured e-questionnaire in Google Form was prepared and shared with the workers. This instrument is structured into four sections. Section A is designed to collect the demographic data of health workers in the selected hospitals, Section B to collect data on the availability of autonomous systems, Section C to investigate the use of autonomous systems by health workers, and Section D to measure the ICT literacy among healthcare workers.

To ascertain the instrument's face validity, the questionnaire was subjected to correction by the expert and an authority in the field. Also, to establish the instrument's internal reliability, a pre-field study was done. In doing so, twenty (20) copies of the instrument were administered on the healthcare workers of another LGA (Ibadan North) in Ibadan. The instrument's reliability was tested using Cronbach's Alpha. To analyse the data, Python code was used to generate results for each research objective and clearly interpreted using bar charts, histograms, graphs, etc.

4. Results and Discussion

This section presents the results of the data analysis as related to the objectives of the study. It begins with the analysis of the demographic characteristics of the respondents, assessing the level of availability of autonomous systems, examining the extend of use of autonomous systems by health workers, investigating whether the availability and the use of autonomous systems significantly predict ICT literacy levels.

- 4.1 Analysis of Demographic Characteristics of the Respondents
- 4.1.1 Gender

Analysis revealed 83 (52.5%) and 75 (47.5%) respondents were female and male respectively.

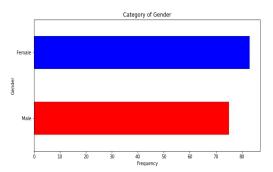


Figure 1: Respondents' Gender

4.1.2 Age Range

In terms of age range, 80 (50.6%), 33 (20.9%) and 27 (17.1%) respondents were between ages 30 and 39, ages 40 and 49 and ages 20 and 29 respectively. This implies that most healthcare workers were between the ages of 20 and 49. Hence, considerably young healthcare workers. This is represented in Figure 2.

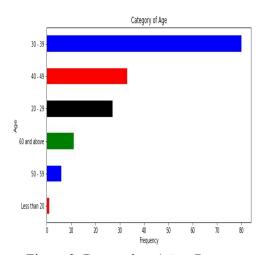


Figure 2: Respondents' Age Range

4.1.3 Highest Educational Qualification

For the respondents' highest educational qualification, analysis revealed that 70 (44.3%), 48 (30.4%), 23 (14.6%), and 15 (9.5%) respondents had Bachelor's degree, HND, Master's, and OND respectively. This implies that most healthcare workers had the minimum of HND (i.e.) most of them were well educated. This is represented in Figure 3.

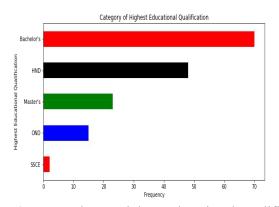


Figure 3: Respondents' Highest Educational Qualification

4.1.4 Types of Hospitals

Analysis revealed that 85 (53.8%) of the respondents worked in private hospitals while 73 (46.2%) worked in public hospitals. This implies that both hospitals were well represented in healthcare services but with private hospitals having a little edge. This is represented in Figure 4.

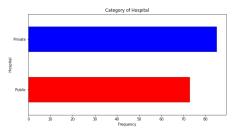


Figure 4: Types of Hospitals

4.1.5 Profession

For the respondents' profession, analysis revealed that (18.4%) respondents were CHEW; (17.1%) respondents were nurses; (13.9%) respondents were laboratory technicians; (8.9%) respondents were Health Information Officers; and (22.8%) respondents had other professions aside from the ones stated. This implies that the most readily available healthcare workers were CHEW, Nurses, Laboratory Technicians, and Health Information Officers. This is represented in Figure 5.

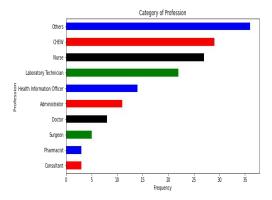


Figure 5: Profession of the Respondents

4.1.6 Grade Level

Considering the grade levels of the respondents, analysis revealed that (47.5%), (10.8%), (8.9%), (8.2%) and (7.0%) of the respondents were in grade levels 8, 7, 10, 9 and 12 respectively. This implies that majority of the healthcare workers were between grade levels 7 and 12. This buttressed the fact that most healthcare workers were young. This is represented in Figure 6.

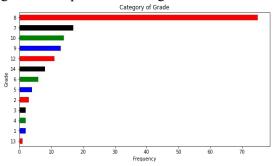


Figure 6: Grade Level of the Respondents

4.2 Assessing the Level of Availability of Autonomous Systems

The analyses below revealed that, with a mean score of 1.862025, the availability of autonomous systems in hospitals in Akinyele Local Government Area, Ibadan, Oyo State was low. The analyses further revealed that, even with this low availability, private hospitals still had more autonomous systems available than public hospitals as shown in Figure 7. In addition, the analyses in Figure 8 revealed that the available autonomous systems were mostly used by surgeons, consultants, Health Information Officers, doctors, administrators, and pharmacists.

In addition, there was a significant difference in the availability of autonomous systems between public and private hospitals as shown in Table 1. Since p < 0.05. This means hospital type affected the availability of autonomous systems, with private hospitals having the edge. Also, there was a significant difference in the availability of autonomous systems across different professional groups as shown in Table 2. Again, p < 0.05 showed that profession played a role as some professions (e.g., surgeons, consultants) reported higher availability than others (e.g., nurses, pharmacists).

Descriptive Statistics of Availability of Autonomous System						
Count	158.00000					
Std	1.862925					
Min	0.837619					
25%	1.000000					
50%	1.000000					
75%	1.800000					
Max	2.400000					
Name: Availabil	ity_Score, dtype: float64					

rume. Tranasmy_score, atype.

Interpretation

Mean scores:

 $1.0-2.0 \rightarrow \text{Low Availability}$

 $2.1-3.0 \rightarrow Moderate Availability$

 $3.1-4.0 \rightarrow \text{High Availability}$

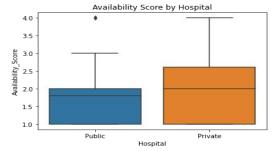

 $4.1-5.0 \rightarrow \text{Very High Availability}$

Table 1 ANOVA (Hospital):

	sum_sq	df	F	PR(>F)
C(Hospital)	3.267459	1.0	4.768911	0.030472
Residual	106.884693	156.0		

Table 2 ANOVA (Profession):

	sum_sq	df	F	PR(>F)	
C(Profession)	32.758379	9.0	6.960422	2.423293e-08	
Residual	77.393772	148.0			

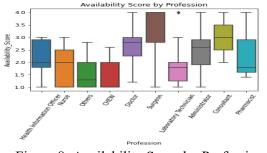


Figure 7: Availability Score by Hospital

Figure 8: Availability Score by Profession

4.3 Examining the Extent of Use of Autonomous Systems by Health Workers.

The analyses below revealed that, with a mean score of 1.879747 for general use of autonomous systems and a mean score of 1.586306 for specific use of autonomous systems, the use of autonomous systems in hospitals in Akinyele Local Government Area, Ibadan, Oyo State was low. The analyses further revealed that, even with this low use, private hospitals still used more autonomous systems than public hospitals as shown in Figure 10. In addition, the analyses in Figure 9 revealed that autonomous systems were mostly used by surgeons, consultants, doctors, pharmacists, and administrators.

In addition, there was a statistically significant difference in the use of autonomous systems among the various professional categories as shown in Table 3. Professions like surgeons or administrators used these systems more often than others. The low p-value (< 0.01) indicated this difference. Also, there was also a statistically significant difference in the use of autonomous systems between public and private hospitals. The p-value (< 0.05) meant hospital type influenced how much these systems were used, with private hospitals showing higher usage.

•	General Osc Score.	
(Count	158.00
]	Mean	1.879747
9	Std	0.853992
]	Min	1.000000
2	25%	1.000000
	50%	2.000000
,	75%	2.400000
]	Max	4.000000
1	Name: General Use	Score dtyne: float64

Name: General_Use_Score, dtype: float64

Specific Use Score:

specific osc se	UI C.	
Count	158.00000	
Mean	1,586306	
Std	0.977321	
Min	1.000000	
25%	1.000000	
50%	1.090909	
75%	1.545455	
Max	5.000000	

Name: Specific Use Score, dtype: float64

Interpretation

Mean scores:

 $1.0-2.0 \rightarrow Low use$

 $2.1-3.0 \rightarrow Moderate use$

 $3.1-4.0 \rightarrow \text{High use}$

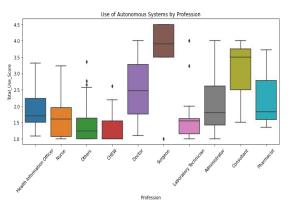

 $4.1-5.0 \rightarrow \text{Very high use}$

Table 3 ANOVA (Profession):

	sum_sq	df	F	PR(>F)	
C(Profession)	37.235162	9.0	7.833554	2.116983e-09	
Residual	78.165228	148.0			

Table 4 ANOVA (Hospital):

	sum_sq	df	F	PR(>F)
C(Hospital)	2.046738	1.0	2.816769	0.095286
Residual	113.353652	156.0		

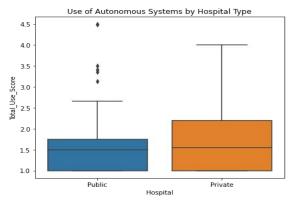


Figure 9: Use of Autonomous Systems by Profession Figure 10: Use of Autonomous System by Hospital Types

4.4 Investigating Whether the Availability and Use of Autonomous Systems Significantly Predict ICT Literacy Levels.

The results below in Table 5 revealed that, with R² value being 0.581, the availability and use of autonomous systems were able to jointly significantly predict only 58.1% variation in ICT literacy level of healthcare workers in Akinyele Local Government Area, Ibadan, Oyo State with the remaining variation predicted by other factors not considered in this study.

The results in Figure 11 further revealed that ICT literacy relatively increased with more availability of autonomous systems. However, the results in Figure 12 revealed that there was a relatively low improvement in ICT literacy when the actual uses of the available autonomous systems were considered.

Table 5: OLS Regression Results

Dep. Variable:	ICT_Literacy_Score	R-squared:	0.581
Model:	OLS	Adj. R-squared:	0.575
Method:	Least Squares	F-statistic:	107.2
Date:	Sat, 05 Jul 2025	Prob (F-statistic):	5.77e-30
Time:	11:05:42	Log-Likelihood:	-178.28
No. Observations:	158	AIC:	362.6
Df Residuals:	155	BIC:	371.8
Df Model:	2	Covariance Type:	nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Const	 0.8732	0.147	5.947	0.000	0.583	1.163
Availability Score	0.6170	0.165	3.748	0.000	0.292	0.942
Total_Use_Score	0.4529	0.161	2.816	0.005	0.135	0.771

Omnibus: 2	21.188	Duroin-w	atson:	1.290	
Prob(Omnibus):		0.000	Jarque-Bera (JB):		25.335
Skew:		0.887	Prob(JB):	3.15e-06	
Kurtosis:		3.838	Cond. No.	11.1	

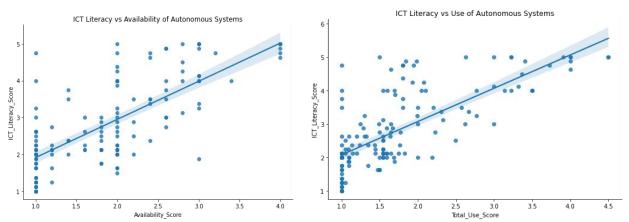


Figure 11: ICT literacy vs Availability of Autonomous Systems

Figure 12: ICT literacy vs Use of Autonomous Systems

4.5 Discussion of Findings

This study examined the availability and use of autonomous systems as predictors of ICT literacy among health workers in Akinyele Local Government Area, Ibadan. These findings were discussed with relevant reviewed literature.

This study found that the availability of autonomous systems among health workers was generally low, especially in public hospitals, while private hospitals demonstrated a slightly higher level of availability. This corroborated Ajibola and Ojo (2022), who explained that although autonomous systems are emerging in healthcare, their presence in Nigeria remains limited due to infrastructural challenges and financial constraints. Similarly, Ali et al., (2023) highlighted inadequate government funding and a lack of prioritization of technology in the health sector as reasons why Nigerian public healthcare institutions are faced with difficulties in accessing modern digital tools.

The study also revealed a low score in the use of autonomous systems, with most low usage reported among administrators, surgeons, and consultants. This finding aligns with Chibuike et al., 2024), who pointed out that despite the introduction of ICT tools in Nigerian hospitals, their use remains limited to specific professional groups who are more exposed or have roles that necessitate such tools. Ehidiamen and Oladapo (2024) also reported healthcare workers' inexperience and lack of exposure have hindered the wide adoption and usage of advanced technologies. Khalid and Ali (2023) in their work also supported low usage and discovered lack of training, resistance to change, and minimal ICT support structures contribute to underutilization of available technologies, even when they are present in the workplace.

A major finding of the study was the discovery of the availability and use of autonomous systems as predictors for ICT literacy among health workers, accounting for 58.1% of the variance. This supports the assertion by Laar *et al.*, (2020) that technology integration in the workplace positively influences the development of digital competencies. This means that the exposure of health workers to ICT tools will not only improve service but also make them acquire technical skills over time. Furthermore, the findings align with Yasuhara et al., (2019), who emphasized that access to and interaction with technology enhances both acceptance and proficiency. This implies that the availability and use of autonomous systems seem to be what is needed for improving ICT literacy among health workers in this context.

5. Conclusion

This study concluded that the availability and use of autonomous systems were significant predictors of ICT literacy among health workers. However, despite their potential, both the availability and actual utilization of these technologies remained low, especially in public healthcare institutions. The implication was that for ICT literacy to improve among health workers, stakeholders must ensure not only that autonomous systems are provided but also that health workers are trained and encouraged to use them

effectively. The study further confirmed a bidirectional relationship where increased availability can foster digital literacy, and enhanced literacy can, in turn, promote more meaningful use of digital tools. The findings aligned with prior research suggesting that technology alone is insufficient unless accompanied by adequate training, support, and a conducive working environment.

Further studies can be comparative studies on the healthcare workers of two or more states in the same or different geo-political zones in Nigeria so as to reveal the extent and variation in the use and availability of autonomous systems, and their relationship with ICT literacy among health workers in Nigeria. Equally, the instrument used in this study was questionnaire, further studies can use both questionnaire and focus group discussion so that various opinions and perspectives of the health workers can be captured. In addition, a larger sample of the population should be used in future researches so that more responses can be captured and used to get a clearer picture and further contributions to the study. Moreover, further studies should examine specific types of autonomous systems and their individual contributions to ICT literacy development among healthcare workers, and lastly, investigations could focus on the cost-benefit analysis of deploying autonomous systems in public hospitals, especially in resource-constrained settings.

REFERENCES

- Adeleke, O.K., Segun, I.B., & Olaoye, A.I.C. (2019). Impact of internal control on fraud prevention in deposit money banks in Nigeria. *Nigerian Studies in Economics and Management Sciences*, 2(1), 42-51.
- Adeleke, A. A., & Ezenwa, U. C. (2020). Age, gender, and prior experience as predictors of ICT literacy. *Journal of Digital Literacy*, 15(2), 45–58.
- Adekunle, R. A., & Musa, F. O. (2022). ICT literacy among teachers in south-western Nigeria: Access versus proficiency. *Nigerian Journal of Education and Technology*, 8(1), 22–34.
- Advance Scholars Publications. (2025). Knowledge and utilization of ICT tools in healthcare delivery among health centre workers in Port Harcourt Metropolis. *Retrieved from* https://aspjournals.org/2025/02/13/knowledge-and-utilization-of-ict-tools-in-healthcare-delivery-among-health-center-workers-in-port-harcourt-metropolis/
- Ajibola, B., & Ojo, R. (2022). Infrastructure and ICT competency: Challenges for developing countries. *African Journal of Information Systems*, 14(3), 50–63.
- Al-Qudah, A. A., Qasem, Z., & Al-Jarrah, I. (2022). Adoption of telemedicine technologies during the COVID-19 pandemic: A study using the extended TAM in public hospitals in Jordan. *Health Informatics Journal*, 28(1). https://doi.org/10.1177/14604582211065852
- Ali, O., Abdelbaki, W., Shrestha, A., Elbasi, E., Alryalat, M. A. A., & Dwivedi, Y. K. (2023). A Systematic
 - Literature Review of Artificial Intelligence in the Healthcare Sector: Benefits, Challenges, Methodologies, and Functionalities. *Journal of Innovation & Knowledge*, 8, Article 100333. https://doi.org/10.1016/j.jik.2023.100333
- Ancker, J. S., Miller, M. C., Patel, V., Kaushal, R., & with the HITEC Investigators. (2024). Sociotechnical
 - challenges to developing technologies for patient access to health information exchange data. *Journal of the American Medical Informatics Association*, 21(4), 664-670.
- Anderson, L., & Chen, M. (2020). The role of autonomous robots in healthcare during the COVID-19 pandemic. *Healthcare Robotics Journal*, 12(3), 215-229. https://doi.org/10.1080/HRJ.2020.108412
- Al-Qaysi, N., Mohamad-Nordin, N., & Al-Emran, M. (2021). A systematic review of the Technology Acceptance Model in health informatics: An analysis of factors influencing user acceptance/behavior of health information systems. *Applied Sciences*, 11(22), 10537. https://doi.org/10.3390/app112210537

- Aslan, S., & Zhu, C. (2021). Digital literacy in the COVID-19 era: Challenges and interventions. Education
 - and Information Technologies, 26, 6883–6900. https://doi.org/10.1007/s10639-021-10610-2
- Atasoy, H., Demirezen, E. M., & Chen, P. Y. (2021). Impacts of patient characteristics and care fragmentation on the value of HIEs. *Production and Operations Management*, 30(2), 563-583.
- Azari, A. M., Wilujeng, I., & Nurohman, S. (2023). Development of Web-based Science Learning to Improve ICT Literacy and Conceptual Understanding Skills. *JSER Journal of Science Education Research Journal*, 22(1), 1–13. www.journal.uny.ac.id/jser
- Bietz, M. J., Bloss, C. S., Calvert, S., Godino, J. G., Gregory, J., Claffey, M. P., ..., & Patrick, K. (2023). Opportunities and challenges in the use of personal health data for health research. *Journal of the American Medical Informatics Association*, 23(e1), e42-e48.
- Braunstein, M. L. (2018). Health care in the age of interoperability: The potential and challenges. *IEEE Pulse*, 9(5), 34-36.s
- Brown, A., Johnson, P., & Lee, S. (2021). A digitally competent health workforce: Scoping review of educational frameworks. *Journal of Medical Internet Research*, 23(2), e23456. https://doi.org/10.2196/23456
- Castaneda, C., Nalley, K., Mannion, C., Bhattacharyya, P., Blake, P., Pecora, A., ..., & Suh, K. S. (2024). Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. *Journal of Clinical Bioinformatics*, 5(1), 1-16.
- Chang H, Huang TL, Wong MK, Ho L, Wu CN, & Teng CI (2021). How robots help nurses focus on professional task. *Journal of Nursing Scholarship*, 53(2), 237–245.
- Chen, L., Wang, M., & Li, X. (2021). Multi-sensor fusion for enhanced obstacle detection in autonomous vehicles. *IEEE Transactions on Intelligent Transportation Systems*, 22(3), 456-467. https://doi.org/10.1109/TITS.2021.3056679
- Chibuike, M. C., Sara, G. S., & Adele, B. (2024). Overcoming challenges for improved patient-centric care: A scoping review of platform ecosystems in healthcare.
- Edison, G. (2023). Transforming medical decision-making: A comprehensive review of AI's impact on diagnostics and treatment. BULLET: *Jurnal Multidisiplin Ilmu*, 2(4), 1121-1133.
- Ehidiamen, A. J., & Oladapo, O. O. (2024a). Optimizing contract negotiations in clinical research: Legal strategies for safeguarding sponsors, vendors, and institutions in complex trial environments. *World Journal of Biology Pharmacy and Health Sciences*, 20(1), 335-348. https://doi.org/10.30574/wjbphs.2024.20.1.0790
- Ehidiamen, A. J., & Oladapo, O. O. (2024b). The role of electronic data capture systems in clinical trials: Streamlining data integrity and improving compliance with FDA and ICH/GCP guidelines. *World Journal of Biology Pharmacy and Health Sciences*, 20(1), 321-334. https://doi.org/10.30574/wjbphs.2024.20.1.0789
- Ehidiamen, A. J., & Oladapo, O. O. (2024c). Innovative approaches to risk management in clinical research: Balancing ethical standards, regulatory compliance, and intellectual property concerns. *World Journal of Biology Pharmacy and Health Sciences*, 20(1), 349-363. https://doi.org/10.30574/wjbphs.2024.20.1.0791
- Eisenberg, M. A. (2022). Clinical Informatics Policy and regulations. In Clinical Informatics Study Guide: *Text and Review* (35-45).
- Elmy, J., & Jizat, M. (2019). Investigating ICT-literacy assessment tools: Developing and validating a new assessment instrument for trainee teachers in Malaysia. *Journal for Research in Mathematics Education*, 3(August), 325–336.
- Emergen Research. (2020). Healthcare robotics market by type; By application (neurosurgery, orthopedic surgery, cardiology, laparoscopy, pharmacy applications, others); By portability (mobile, fixed); By enduse industry (rehabilitation, hospitals, and others); By region forecasts to 2027. https://www.emergenresearch.com/industry-report/healthcare-robotics-market
- European Commission. (2024). The 2024 state of the digital decade. Available at: http s://digital-strategy.ec.europa.eu/en/library/report-state-digital-decade-2024.

- Garcia, M., Rodriguez, L., & Wang, T. (2023). An integrative review on the acceptance of artificial intelligence among healthcare professionals. *BMC Medical Informatics and Decision Making*, 23, Article 45. https://doi.org/10.1186/s12911-023-02045-6
- Gaynor, M., Yu, F., Andrus, C. H., Bradner, S., & Rawn, J. (2024). A general framework for interoperability with applications to healthcare. *Health Policy and Technology*, 3(1), 3-12.
- Gupta, S., Mehrotra, D., & Sarkar, A. (2023). Exploring technology acceptance for digital health innovations: A cross-country analysis. *Journal of Health Informatics*, 39(2), 87–102. https://doi.org/10.1016/j.jhi.2023.01.005
- Hersh, W. R., & Hoyt, R. E. (2018). Health Informatics: Practical Guide Seventh Edition. Lulu. com.
- Holmgren, A. J., Esdar, M., Hüsers, J., & Coutinho-Almeida, J. (2023). Health information exchange: Understanding the policy landscape and future of data interoperability. *Yearbook of Medical Informatics*, 32(01), 184-194.
- Ilomaki, L., Paavola, S., Lakkala, M., & Kantosalo, A. (2016). Digital competence—an emergent boundary concept for policy and educational research. *Education and Information Technologies*, 21, 655–679
- Ilugbusi, S., Akindejoye, J.A., Ajala, R.B., & Ogundele, A. (2020). Financial liberalization and economic growth in Nigeria (1986-2018). *International Journal of Innovative Science and Research Technology*, 5(4), 1-9.
- International ICT Literacy Panel. (2019). Digital Transformation and ICT Literacy. OECD Publishing.
- Jarva, E., Oikarinen, A., Andersson, J., Pramila-Savukoski, S., Hammar'en, M., & Mikkonen, K. (2024). Healthcare professionals' digital health competence profiles and associated factors: A cross-sectional study. *Journal of Advanced Nursing*, 80(8), 3236–3252.
- Jarva, E., Oikarinen, A., Andersson, J., Tomietto, M., Ka^{***} ari" ainen, M., & Mikkonen, K. (2023). Healthcare professionals' digital health competence and its core factors; development and psychometric testing of two instruments. *International Journal of Medical Informatics*, 171, 104995.
- Jarva, E., Oikarinen, A., Andersson, J., Tuomikoski, A. M., Ka^{***} ari^{**} ainen, M., & Merilainen, M. (2022). Healthcare professionals' perceptions of digital health competence: *A qualitative descriptive study. Nursing Open*, 9(2), 1379–1393.
- Jiang, H., Roberts, M., & Davis, K. (2023). Transformative potential of AI in healthcare. *Journal of Healthcare Informatics Research*, 7(1), 12–25. https://doi.org/10.1007/s41666-023-00123-4
- Jin, H., Huang, Y., & Cheng, S. (2022). An adaptability framework for autonomous vehicles in diverse terrains. *Journal of Autonomous Systems Research*, 15(2), 112-129. https://doi.org/10.1016/j.autsys.2022.104323
- Jones, T., Patel, S., & Lee, A. (2022). The impact of autonomous systems on employment and ethics. *Journal of Industrial and Labour Relations*, 14(2), 105-120. https://doi.org/10.1108/JILR.2022.108472
- Khalid, A., & Ali, M. (2023). ICT competency development through continuous training: Evidence from public sector. *Journal of Technology in Society*, 19(1), 11–25.
- Kohli, R., & Tan, S. S. L. (2022). Electronic health records. MIS Quarterly, 40(3), 553-574.
- Konttila, J., Siira, H., Kyngas, "H., Lahtinen, M., Elo, S., K" aari "ainen, "M., ... Mikkonen, K. (2019). Healthcare professionals' competence in digitalisation: A systematic review. Journal of Clinical Nursing, 28(5–6), 745–761.
- Kuek, A., & Hakkennes, S. (2020). Healthcare staff digital literacy levels and their attitudes towards information systems. *Health Informatics Journal*, 26(1), 592–612. https://doi.org/10.1177/1460458219839613
- Kulju, E., Jarva, E., Oikarinen, A., Hammar'en, M., Kanste, O., & Mikkonen, K. (2024). Educational interventions and their effects on healthcare professionals' digital competence development: A systematic review. *International Journal of Medical Informatics*, 185,

- Article 105396. https://doi.org/10.1016/j.ijmedinf.2024.105396
- Kumar, B. K., Srinivas, U. M., Kumar, M. B. B., Rao, N. S., Mishra, M. K., Srinivas, P., & Ramanaiah, M. P. (2023). Health informatics and social determinants utilizing big data to address health disparities. *Journal of Namibian Studies: History Politics Culture*, 35, 2398-2414.
- Kumpulainen, H., Kinnunen, U. M., & Jylha, "V. (2025). ICT acceptance in social and healthcare context A scoping review of theories and models. *International Journal of Medical Informatics*, 105796.
- Laakkonen, N., Jarva, E., Hammar'en, M., Kanste, O., K" a" ariainen, "M., Oikarinen, A., & Mikkonen, K. (2024). Digital competence among healthcare leaders: A mixed methods systematic review. *Journal of Nursing Management*. Article 8435248. https://doi.org/10.1155/2024/8435248
- Laar, E., Deursen, A. V., & Dijk, J. V. (2020). Determinants of 21st-century digital skills: A European perspective. *Telematics and Informatics*, 55, 101464. https://doi.org/10.1016/j.tele.2020.101464
- Laric, M. V., & Pitta, D. A. (2019). Preserving patient privacy in the quest for health care economies. *Journal of Consumer Marketing*, 26(7), 477-486.
- Lee, C., Thompson, R., & White, J. (2024). Artificial intelligence education programs for healthcare professionals: Bridging the gap. *International Journal of Medical Education*, 15, 100–110. https://doi.org/10.5116/ijme.63e1.0b2a
- Lin, D., & Lee, J. (2021). Balancing efficiency and safety in autonomous decision-making. *International Journal of Robotics and Automation*, 37(1), 54-69. https://doi.org/10.1007/s10514-021-12345-6
- Ma, Y., Song, Y., Balch, J. A., Ren, Y., Vellanki, D., Hu, Z., Brennan, M., Kolla, S., Guan, Z., Armfield, B., Ozrazgat-Baslanti, T., Rashidi, P., Loftus, T. J., & Brakenridge, S. C. (2024). Defining artificial intelligence literacy for medical students: A scoping review. *NPJ Digital Medicine*, 7(1), 12. https://doi.org/10.1038/s41746-023-00988-4
- Mareš, J. (2018). Resistance of health personnel to changes in healthcare. Kontakt, 20(3), e262-e272
- Marques, G., Pitarma, R., M. Garcia, N., & Pombo, N. (2019). Internet of things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: *A review. Electronics*, 8(10), 1081.
- Martinez, F., & O'Neill, P. (2020). Fault tolerance in autonomous vehicles through redundant control systems. *Journal of Transportation Technologies*, 8(4), 313-329. https://doi.org/10.4236/jtts.2020.84023
- Nguyen, L., Bellucci, E., & Nguyen, L. T. (2024). Electronic health records implementation: An evaluation of information system impact and contingency factors. *International Journal of Medical Informatics*, 83(11), 779-796.
- Nguyen, P., & Patel, S. (2025). Enhancing ICT literacy through exposure to autonomous systems in healthcare. *Health Informatics Journal*, 31(2), 200–215. https://doi.org/10.1177/14604582211012345
- Nwachukwu, S., Ekwe, M., & Nwosu, K. (2021). Overcoming institutional barriers to ICT integration in African schools. *International Journal of Educational Technology*, 10(2), 91–105.
- OECD. (2021). Digital Education Outlook 2021: Pushing the Frontiers with AI, Blockchain and Robots. *OECD Publishing*. https://doi.org/10.1787/589b283f-en
- Ojo, A. O., Oladipo, A., & Balogun, M. (2024). ICT literacy and clinical efficiency among nurses in Lagos. *Journal of Health Informatics in Developing Countries*, 18(1), 77–89.
- Ojo, O. O., & Kiobel, B. (2024a). The impact of business analytics on healthcare operations: A statistical perspective. *World Journal of Biology Pharmacy and Health Sciences*, 19(3), 205–217. https://doi.org/10.30574/wjbphs.2024.19.3.0625
- Ojo, O. O., & Kiobel, B. (2024b). Optimizing data management in healthcare: Lessons from

- clinical trials and beyond. *World Journal of Biology Pharmacy and Health Sciences*, 19(3), 218–231. https://doi.org/10.30574/wjbphs.2024.19.3.0626
- Ojo, O. O., & Kiobel, B. (2024c). Emerging trends in survival analysis: Applications and innovations in clinical and epidemiological research. *World Journal of Biology Pharmacy and Health Sciences*, 19(3), 232–245. https://doi.org/10.30574/wjbphs.2024.19.3.0627
- Ojo, O. O., & Kiobel, B. (2024d). Statistical challenges and solutions in multidisciplinary clinical research: Bridging the gap between. *World Journal of Biology Pharmacy and Health Sciences*, 19(3), 246–258. https://doi.org/10.30574/wjbphs.2024.19.3.0628
- Ojo, O. O., & Kiobel, B. (2024e). Data-driven decision-making in public health: The role of advanced statistical models in epidemiology. *World Journal of Biology Pharmacy and Health Sciences*, 19(3), 259–270. https://doi.org/10.30574/wjbphs.2024.19.3.0629
- Okoro, B. C., Ogochukwu, E. S. N., and Okoro, V. I. (2018). Impact of Conflict Management on Job Performance in Financial Sector. *International Journal of Business, Economics and Entrepreneurship Development in Africa*, 10(4-5), 45-55.
- Ostern, N., Perscheid, G., Reelitz, C., & Moormann, J. (2021). Keeping pace with the healthcare transformation: A literature review and research agenda for a new decade of health information systems research. *Electronic Markets*, 31, 901-921.
- Ovwasa, L. O. (2022). Nursing informatics: Factors influencing the use of ICT by nurses in a Nigerian teaching hospital. *Journal of Health Informatics in Developing Countries*, 16(2), 1-14.
- Park, J., & Liu, H. (2023). International regulatory standards for autonomous systems. *Global Technology Standards Journal*, 6(3), 219-233. https://doi.org/10.1007/GTJ.2023.102321
- Peng, Y., Zhang, R., & Liu, W. (2024). Predictive fault tolerance in autonomous manufacturing robots. *IEEE Robotics and Automation Magazine*, 31(2), 78-89. https://doi.org/10.1109/MRA.2024.1002345
- Petersson, L., Larsson, I., Nygren, J. M., Nilsen, P., Neher, M., Reed, J. E. et al. (2022). Challenges to Implementing Artificial Intelligence in Healthcare: A Qualitative Interview Study with Healthcare Leaders in Sweden. *BMC Health Services Research*, 22, Article No. 850. https://doi.org/10.1186/s12913-022-08215-8
- Robert N (2019). How artificial intelligence is changing nursing. *Nursing Management*, 50(9), 30–39.
- Robinson, K. M. (2017). The dynamics of health information management in Australia: the emergence and shaping of a profession (Doctoral dissertation, University of Tasmania).
- Santos, M., & Green, T. (2022). Safety assurance frameworks for autonomous vehicle verification. *Automotive Engineering International*, 50(3), 211-230. https://doi.org/10.1007/s12623-022-00890-3
- Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The Role of Artificial Intelligence in Healthcare: A Structured Literature Review. *BMC Medical Informatics and Decision Making*, 21, Article No. 125. https://doi.org/10.1186/s12911-021-01488-9
- Sharma, R., & Sharma, S. (2023). ICT literacy and workplace innovation: A longitudinal study. *Journal of Digital Transformation*, 4(1), 33–49.
- Shi, X., Sun, L., & Zhao, P. (2023). Deep reinforcement learning for dynamic obstacle adaptation in UAVs. *Journal of Robotics and Autonomous Systems*, 134, 104198. https://doi.org/10.1016/j.robot.2023.104198
- Shiferaw, F., Zolfo, M., & Kaba, M. (2020). Healthcare providers' digital competency in resource-limited settings: A cross-sectional study. *BMC Health Services Research*, 20(1), 478. https://doi.org/10.1186/s12913-020-05283-1
- Smith, J. & Doe, A. (2022). Factors influencing healthcare workers' acceptance of AI technologies. *Computers in Human Behavior*, 130, 107–115. https://doi.org/10.1016/j.chb.2022.107115
- Spruit, M., & Lytras, M. (2018). Applied data science in patient-centric healthcare: Adaptive

- analytic systems for empowering physicians and patients. *Telematics and Informatics*, 35(4), 643-653.
- Sun, Y., Kim, J., & Roberts, P. (2023). Robotics in autonomous manufacturing: Adaptability and precision in smart factories. *International Journal of Robotics and Automation*, 39(5), 877-891. https://doi.org/10.1016/j.ijra.2023.100023
- Takahashi, Y., Yamamoto, R., & Ueda, T. (2023). Autonomous navigation in complex indoor spaces. *Robotics and Autonomous Systems*, 23(4), 312-328. https://doi.org/10.1016/j.ras.2023.104431
- Turner, R., & White, J. (2021). Improving human-autonomy interaction reliability in autonomous vehicles. *Human-Computer Interaction Journal*, 45(4), 672-687. https://doi.org/10.1080/07370024.2021.1024915
- Uchechukwu, E.S., Amechi, A.F., Okoye, C.C., & Okeke, N.M. (2023). Youth unemployment and security challenges in Anambra state, Nigeria.
- Witherspoon, L. (2024). Ethical considerations in the use of autonomous robots in healthcare.
- Wong, M. Y. Z., Yee, K. C., Turner, P., & Poon, S. K. (2014). Understanding e-health literacy and attitudes towards e-health among older students. *International Journal of Medical Informatics*, 83(5), 398-403. https://doi.org/10.1016/j.ijmedinf.2014.02.001
- World Bank. (2024). Digital skills for economic resilience. Retrieved from https://www.worldbank.org/en/topic/digitaldevelopment/publication/digital-skills
- World Health Organization (WHO). (2019). WHO guideline: Recommendations on digital interventions for health system strengthening. *World Health Organization*.
- World Health Organization (WHO). (2023). The ongoing journey to commitment and transformation. *Digital health in the WHO European Region* 2023.
- Yasuhara Y, Ito H, Tanioka T, Kondo K, & Locsin R (2019). Report on the second international seminar and workshop on technological competency as caring in the health sciences 2018. *Journal of Medical Investigation*, 66(1.2), 54–57.
- Zhang, Y., Li, M., & Chen, G. (2022). Drone swarming technologies for real-time applications. *Journal of UAV Systems*, 10(2), 125-139. https://doi.org/10.1080/24510454.2022.1062796
- Zhu, Q., & Tang, W. (2023). Adaptive and personalized interfaces in human-machine interaction. *Human-Computer Studies*, 52(1), 87-102. https://doi.org/10.1016/j.hcs.2023.101013