
International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 89

SELECTING AN EFFECTIVE MICROSERVICES
DECOMPOSITION APPROACH: A DECISION

FRAMEWORK

*Md. Abdul Momin1, M.M. Musharaf Hussain2, and Md. Ezharul Islam3

1Department of Computer Science Engineering, Jahangirnagar University
2Department of Computer Science Engineering, Jahangirnagar University
3Department of Computer Science Engineering, Jahangirnagar University

Email: momin99cse@gmail.com

Abstract: This research presents a comprehensive exploration of diverse microservices decomposition techniques. This
research identifies the sequential steps integral to each decomposition method through a meticulous study and analysis of
multiple techniques. Moreover, the paper integrates insights gleaned from a select group of experts. These experts offer
valuable perspectives on software characteristics and elucidate the types of example software ideally suited for distinct
decomposition types. They also validate the time and cost implications associated with each decomposition technique.
Drawing from these multifaceted insights, the paper culminates in creating an algorithm. This algorithm is intricately
designed based on collective knowledge and discussions surrounding software traits, such as suitability, time, and cost
considerations linked to various decomposition techniques. This algorithm helps developers choose the most effective
decomposition approach for microservices.

Keywords: Microservice, Monolithic, SOA, Decomposition, Domain Driven Design (DDD), AOP, DBSCAN

1. INTRODUCTION

In this section, the authors describe the problem, the main question, and try to find the answer. Microservices are a
service-oriented architecture pattern that breaks applications into small, independent service units, promoting
efficient development and scalability. SOA and MSA are service-based architectures that break down systems into
modular and self-contained services. Microservices focus on goals and replace ability, allowing new technologies to
be tried in isolated services. Smaller components make applications easier to build and maintain. MSA enables
independent service management. Loosely coupled software makes it easier to engage with open source. SOA
emphasizes sharing, while MSA minimizes it. MSA prefers choreography but aims to reduce it due to the high
coupling risks. SOA has an enterprise scope, while MSA focuses on application scope [1]. Monolithic, SOA, and
Microservices are architectural approaches for large-scale applications. SOA and MSA are both service-based
architectures that break down systems into smaller, more manageable services. It is suggested that MSA represents
the future direction of service-based architectures, while SOA becomes a legacy architecture. MSA is more flexible
and scalable than SOA, and it is better applicable to the ever-changing requirements of modern applications [2].
Microservices are smaller and more specialized than traditional SOA services. They're also more independent,
making them easier to build, test, deploy, and maintain in the long run. They also work well for web-based systems
that have clear, separate components. SOA and microservices are both architecturally service-based, with
differences in strengths and weaknesses. SOA is better suited for large, complex enterprise systems, and
microservices are appropriate for smaller, more agile applications [3]. Time and cost are two of the biggest
challenges facing organizations that are considering adopting a microservices architecture.

Problem Statement: The problem Statement of this research is that in the era of microservices architecture,
organizations face a critical challenge in determining the most effective approach for decomposing monolithic
systems into microservices. The absence of a standardized method for selecting decomposition strategies often leads
to ambiguity and suboptimal architectural choices. This research aims to address this gap by developing a
comprehensive decision framework that assists organizations and architects in systematically evaluating and
selecting the most suitable microservices decomposition approach. The framework will consider various factors
various factor related to the decomposition of monolithic applications.

mailto:momin99cse@
https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 90

Research Objective: The research objectives of this study are to conduct a comprehensive examination and analysis
of various decomposition approaches, delving into their respective implementation processes and methodologies. To
assess which decomposition methods are suitable for different software examples based on their specific
characteristics. Ultimately, choose a decomposition approach for transitioning from monolithic software to
microservices that optimizes both time and cost-effectiveness.
The study will be conducted in three phases:

i. Literature review: The initial stage will encompass a thorough examination of current research on
microservices architecture, focusing on the efficient breakdown of monolithic systems in terms of time
and cost-effectiveness.

ii. Experts' Opinion: During the second phase, experts' perspectives will be sought regarding the
transition from monolithic to microservices across multiple parameters.

iii. Algorithm Design: In the third phase, an algorithm will be crafted to select an effective decomposition
method efficiently.

The findings of this study will contribute to the body of knowledge on microservices architecture and time and cost-
effective implementation. The study will also provide practical guidance to organizations that are considering
adopting a microservices architecture.

Research Question: Here are some specific research questions that the study will address:

RQ1: Select the effective microservices decomposition approaches for different types of applications.

RQ2: Develop a decision framework to select the most appropriate microservices decomposition approach for a
specific application.

RQ3:AWay to evaluate the effectiveness of different microservices decomposition approaches.

In this study, a combination of quantitative and qualitative research methods is used. Quantitative methods will be
used to collect data on challenges and risks associated with microservices decomposition. Qualitative methods will
be used to increase a deeper understanding of these challenges and risks.

2. LITERATURE REVIEW

A critical step in microservices adoption is decomposing applications into cohesive services. A service, as defined by
[4], must encapsulate business capabilities, a clear interface, and a contract, though specifics on categorization and
ownership remain underexplored. While Bogner et al. [5] explore how traditional SOA patterns can be adapted for
microservices, their study falls short in one key area it doesn’t fully weigh the practical trade-offs, especially when it
comes to implementation costs or time investments. This leaves practitioners without clear guidance on whether
repurposing an SOA pattern is truly worth the effort in their specific context. Similarly, the authors of [6] provide a
useful survey of migration patterns from SOA to microservices, but their focus remains narrowly technical. Lots of
studies look at how microservices stack up against traditional monoliths or SOA architectures. For instance, [11]
quantifies infrastructure costs, showing microservices can reduce cloud expenses by up to 70% compared to
monoliths, while serverless (e.g., AWS Lambda) further cuts overhead. Performance evaluations are explored by [13]
and [14], which compare response times, scalability, and resource utilization, revealing microservices’ strengths in
modularity but potential latency in distributed workflows. [15] Extend this to serverless architectures, highlighting
context-dependent trade-offs in cloud environments. The debate between microservices and conventional SOA-
based web services is dissected by [8], which evaluates scalability, flexibility, and maintainability. Their analysis
includes real-world cases to illustrate practical implications, though it acknowledges that the "right" choice depends
on organizational context. Complementing this, [7] provides a foundational review of microservices architecture,
clarifying its role in modern software development and underscoring its advantages in agility and independent
deploy ability. Transitioning to microservices involves technical and organizational hurdles. Studies like [5] and [6]
do a good job explaining how to adapt patterns for microservices, but they miss the practical challenges - like how

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 91

these systems actually scale in big organizations. Luckily, we can learn from real-world examples: [16] shows how
Brazilian government agencies managed to reduce deployment risks and push updates faster, while [17] reveals how
companies like Amazon, Netflix and Uber used microservices to become more scalable and agile. Rainyday Grocer
[18] exemplifies cost-efficient scaling using CI/CD and DevOps, though balancing operational expenses remains a
consideration. Innovative applications of microservices are explored in niche domains. For example, [10] combines
blockchain with microservices to enhance security and transparency in public safety systems, while [12] optimizes
AI microservices on edge devices by analyzing latency-cost trade-offs. Complexity metrics, as studied by [9], offer
quantitative comparisons between SOA and microservices, assessing code and interaction intricacies to guide
architectural decisions. Despite extensive research, gaps persist. Many studies ([5], [6], [13]) prioritize technical
feasibility over socio-technical barriers (e.g., team structure, skill gaps). Cost-time trade-offs in migration ([5], [11])
and empirical validations of scalability ([16]) warrant deeper exploration. Future work could integrate organizational
factors with technical metrics to offer holistic guidance for practitioners. Most of the research out there on
microservices gets way too caught up in the technical details—how to chop up an app, optimize performance, all
that nerdy stuff. But what about the real-world messiness? Nobody’s talking about the hidden costs, the team drama,
or whether switching to microservices is even a smart move for most companies. Sure, you’ll find plenty of glossy
case studies about Amazon and Netflix pulling it off flawlessly—but where are the stories about the migrations that
blew up budgets, took years longer than planned, or just crashed and burned? It’s like reading Yelp reviews where
everyone’s either five stars or radio silence—nobody’s admitting when things went sideways. Others compare
microservices to monoliths but only look at performance, not security or maintenance nightmares. Plus, there’s
barely any solid advice on how to actually break down big systems without causing chaos, and almost no one talks
about doing it step by step instead of all at once. Bottom line? We need more practical, no-BS guidance that covers
not just code, but people, money, and risks—because right now, it’s too easy for companies to jump in and regret it
later.

3. RESEARCH METHODOLOGY

In this section, we examine various decomposition approaches tailored to specific characteristics and types of
monolithic software. Additionally, we outline the steps involved in decomposing monolithic software, including
estimated timeframes and costs based on expert opinions. All of these are detailed using three tables. Effectively
migrating to a microservice from a monolithic application is crucial for adopting a microservice architecture. A
well-structured decomposing method can facilitate this process. This study develops a comprehensive procedure for
effective microservice decomposition. Various factors such as application architecture, business requirements, and
technical limitations are considered here. The proposed methodology will be evaluated through real-world case
studies to assess its effectiveness in practical scenarios. The findings of this research will provide valuable insights
for organizations considering microservice adoption and guide their decomposition efforts. This research will
contribute to the advancement of microservice architecture research by introducing a systematic and practical
approach to microservice decomposition. Our methodology encompasses three distinct phases. In the initial phase,
we identify and analyze various decomposition processes, meticulously outlining their decomposition steps.
Subsequently, we conduct a comprehensive survey and engage in insightful interviews with a diverse group of
software professionals to carefully select the most suitable decomposition process for a specific set of software
characteristics and types. Additionally, we consider the time and cost implications associated with each
decomposition process step. Finally, we meticulously select the most appropriate decomposition process tailored to
the specific requirements.

In our preliminary stage, we examined 33 distinct approaches to the decomposition process, delineating their steps.
These various approaches are cataloged in Table 1, while the specific steps associated with each approach are
elaborated upon in Table 2.

TABLE 1. Decomposition Type

#Decomposition Type Description

1: Decomposition by software
component

This approach focuses on identifying cohesive, self-contained components
and transforming them into individual microservices. Each microservice
encapsulates a specific software component's functionality and operates

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 92

independently [19].
2: Decomposition by Software
event log collection

A decomposition technique for monolithic applications that is based on
process mining. Process mining is a technique for extracting knowledge from
event logs, which are records of the activities that have taken place in a
system [20].

3: Decomposition by business
functionalities

Decomposition by business functionalities, also known as functional
decomposition, is a critical step in transitioning from a monolithic
architecture to a microservices architecture. This process involves breaking
down a large, monolithic application into smaller, independently deployable
microservices that are organized around specific business functionalities or
capabilities [21].

4: Decomposition by Analysis
involving both static and
dynamic aspects.

This decomposition process considers both the static, structural aspects of the
application (such as codebase, data schema, and dependencies) and the
dynamic aspects (such as runtime behavior and interactions) [22].

5: Decomposition based on
business capabilities

This approach involves identifying and isolating distinct business capabilities
within the monolith and then creating microservices around them [23].

6: Decomposition by Domain-
driven design (DDD)

Domain-driven design is an approach that focuses on modeling a system's
domain (its core business logic) and breaking it down into bounded contexts,
aggregates, and entities. When transitioning from a monolithic architecture to
microservices [24].

7: Decomposition by API-first
development

An API-first development approach is another strategy for achieving a more
modular and scalable architecture. API-first development focuses on
designing and implementing well-defined APIs as a foundation for building
and integrating services [24].

8: Decomposition by Technical
debt

Decomposing a monolithic application into microservices while addressing
technical debt is a challenging but essential process for ensuring the long-
term maintainability and scalability of your system. Technical debt refers to
the accumulation of suboptimal or hasty technical decisions made during the
development of your monolithic application [25].

9: Data-oriented decomposition Data-oriented decomposition is an approach to transitioning from a
monolithic architecture to a microservices architecture that focuses on
breaking down the monolithic data store and its associated dependencies into
smaller, more manageable data services [25].

10: Process Oriented
decomposition

Process-oriented decomposition is an approach to transitioning from a
monolithic architecture to a microservices architecture that focuses on
breaking down the monolithic application's business processes into smaller,
more manageable microservices [25].

11: User-oriented
decomposition

User-oriented decomposition is an approach to transitioning from a
monolithic architecture to a microservices architecture that focuses on
breaking down the monolithic application's user-facing functionality into
smaller, more specialized microservices [25].

12: Technology-oriented
decomposition

A technology-oriented decomposition is an approach to transitioning from a
monolithic architecture to a microservices architecture that focuses on
breaking down the monolithic application based on the underlying
technologies or technical components it uses [25].

13: hierarchical DBSCAN
algorithm

Hierarchical DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) is an extension of the traditional DBSCAN clustering algorithm
that hierarchically organizes clusters [26].

14: Extensible Multiple Strategy
Tool approach

Creating an extensible multiple-strategy tool for decomposing a monolithic
application into microservices involves developing a flexible software system
that can accommodate various strategies and methods for decomposition [27].

15: decomposition based on the
application's development
history

Analyzing the development history of a monolithic application can provide
valuable insights for identifying potential candidates for microservices
decomposition. By examining the historical context, code changes, and
architectural decisions, you can make informed decisions about which parts
of the monolith should be extracted into microservices [28].

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 93

16: By Keyword Extraction and
BFS Combination Method to
Cluster Monolithic Classes

Decomposing a monolithic application's classes into clusters of microservices
using a combination of keyword extraction and breadth-first search (BFS) is a
complex but powerful approach. This method involves extracting keywords
from class names and code comments to identify related classes and then
using BFS to create clusters based on those relationships [29].

17: A Classification of
Refactoring Approaches

Refactoring approaches for transitioning from a monolithic architecture to a
microservices architecture can be classified into several categories based on
their focus and objectives [30].

18: Decomposition using
Distributed Representation of
Source Code

Decomposing a monolithic application into microservices using the
distributed representation of source code involves breaking down the large,
monolithic codebase into smaller, more manageable services that can operate
independently. This is a complex and multifaceted process that requires
careful planning and execution [31].

19: Decomposition by Aspect-
Oriented Programming

Aspect-oriented programming (AOP) is a programming paradigm that allows
you to modularize cross-cutting concerns, such as logging, security, and
transactions, which often span multiple modules in a monolithic application
[32].

20: Based on a semi-automatic
approach

A semi-automatic approach to decomposing a monolithic application into
microservices combines human expertise with automated tools and processes
[33].

21: Decomposition by an
extensible multiple strategy tool,
called Mono2Micro

The general idea behind such tools (Mono2Micro) is to automate the process
of identifying potential microservices, determining their boundaries, and
assisting with the extraction and refactoring of code [34].

22: Decomposition by
MicroValid: A validation
framework

MicroValid is a validation framework for automatically decomposed
microservices from monolithic applications. It is a tool that can help
developers to assess the quality of their microservices and to identify any
potential problems before they go into production. MicroValid uses a variety
of static analysis techniques to assess the quality of microservices [35].

23: Decomposition based on
Problem Frames

Decomposition based on Problem Frames is a systematic approach to
decomposing monolithic applications into microservices. It is based on the
idea that a monolithic application can be viewed as a collection of problem
frames, each of which represents a distinct business or technical problem
[36].

24: Dependencies-based
decomposition method

Decomposition based on Problem Frames (PFs) is a systematic approach to
decomposing monolithic applications into microservices. It is based on the
idea that a monolithic application can be viewed as a collection of PFs, each
of which represents a distinct business or technical problem [37].

25: Decomposition based on
topic modeling

Decomposition based on topic modeling is a relatively new approach to
decomposing monolithic applications into microservices. It is based on the
idea that the different parts of a monolithic application can be identified and
grouped together based on the topics to which they are related [38].

26: Decomposition uses
evolutionary search

It is a type of optimization algorithm that copies the process of natural
selection and finds optimal solutions to problems. It is often used in software
engineering to find optimal designs, architectures, and configurations.
Evolutionary search, often associated with genetic algorithms, can be applied
to find the best-fit microservice boundaries over time [39].

27: Decomposition using code
vectorization and sequence of
accesses

Decomposition using code vectorization and a sequence of accesses from
monolithic to microservice is a promising approach for automating the
decomposition of monolithic applications into microservices. Decomposition
using code vectorization and sequence of accesses is a promising approach
for automating the decomposition of monolithic applications into
microservices [40].

28: Decomposition using
Quality Driven Framework

A Quality Driven Framework for Decomposing Legacy Monolith
Applications to Microservice Architecture proposes a quality-driven
framework for decomposing monolithic applications into microservices. The
framework is designed to help organizations decompose their monolithic

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 94

applications into microservices in a way that preserves quality [41].
29: Decomposition Applying
Microservice Refactoring

This is a promising approach for refactoring legacy object-oriented systems to
microservices. It is based on some principles and has been evaluated on a
real-world system. Refactoring is a complex process, so no single approach
fits all systems. A specific approach will be used depending on the specific
characteristics of the legacy system [42].

30: Break down a Monolithic
based on cohesion, coupling, and
size.

Breaking down a monolithic application into microservices based on
cohesion, coupling, and size is a sound approach to achieving a well-
structured and maintainable microservices architecture [43].

31: Decomposition by detection
of service boundary

The technique for automating the detection of service boundaries is a
promising approach for breaking down monolithic applications into
microservices. It is based on sound principles and has been evaluated on a
number of real-world applications. The technique has been evaluated on a
number of real-world monolithic applications and is effective in detecting
service boundaries [44].

32: decomposing ORM-based
monolithic web applications

Decomposing ORM (Object-Relational Mapping)-based monolithic web
applications into microservices is a complex process that requires careful
planning and execution. Decomposing ORM-based monolithic web
applications from monolithic to microservices can be a challenging task, but
it can offer a number of benefits, such as improved scalability, reliability, and
maintainability [45].

33: Decomposition based on the
Architecture of the Monolithic
system

A process for converting a monolithic application to a microservices-based
architecture. Converting a monolithic application to a microservices-based
architecture can be a complex task, but it can offer a number of benefits, such
as improved scalability, reliability, and maintainability [46].

In the subsequent stage, we aimed to extract these motivations by carrying out an empirical study through a survey.
This study involved interviewing 16 practitioners who have embraced a microservices-based architectural style for a
minimum of two years. As for the profiles of our interviewees, they exhibit differences across multiple aspects. In
terms of their roles within their companies, our participants consisted of 30% software architects, 25% project
managers, 25% senior developers, 10% agile coaches, and 10% company CEOs. Each interviewee possessed a
minimum of five years of experience in software development, including the CEOs. In terms of the organizational
domain, our interviewees were distributed as follows: 28.57% in banking, another 28.57% in companies exclusively
creating and selling their software as a service (such as website builders, mobile app generators, and similar
services), 23.81% in consultancies focused on microservices migration, 9.52% in public administration IT
departments, and the remaining 9.52% in telecommunication companies. Table 2 serves as a comprehensive
summary curated by expert professionals, detailing the inherent characteristics of software alongside specific
examples that aptly correspond to distinct decomposition types. This collation encapsulates the collective insights
and expertise of these professionals, showcasing how different software attributes harmonize with particular
approaches to decomposition.

TABLE 2. Monolithic Software Characteristics and Type (Described in Appendix A)

Once more, we've outlined various steps for decomposing a monolithic system into microservices based on different
decomposition types. A crucial initial step for all types involves comprehending the monolithic system itself. The
effort and expenses involved in understanding this system depend on its scale, complexity, and the expertise of those
involved. Table 3 presents the decomposition steps derived from the research paper listed in Table 1. Additionally,
we've included time and cost estimations based on our expertise. However, these estimations are ideal scenarios and
may differ depending on the size and complexity of the monolithic system.

TABLE 3. Steps applied and time, and cost requirements of the decomposition process (Described in
Appendix B)

After analyzing the three aforementioned tables, we identified various decomposition types and their corresponding
software characteristics. Additionally, we pinpointed specific software types best aligned with particular

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 95

decomposition methods. Drawing insights from research papers and expert opinions, we inferred the time and cost
involved in breaking down monolithic software into microservices. Consequently, it's now imperative to introduce
an algorithm outlining the process of selecting suitable decomposition types for a monolithic system.

4. PROPOSEDALGORITHMAND EVALUATION

To decompose a monolithic system into microservices here we design an algorithm. Decomposing means breaking
down a large system into several smaller ones. Smaller systems enhance scalability, agility, and easy maintenance.
With the following steps large system can be effectively analyzed. After analyzing based on time and cost can
identify potential decomposition types. Finally, a microservice is generated.

4.1 Proposed Algorithm

Step 1: Find the features of monolithic software as well as its corresponding types.

Step 2: Go through Table 2 iteratively and attempt to correlate its contents with characteristics and types. When a
match is found, categorize and save it as a potential decomposition type.

Step 3: If a single match is identified, classify it as a decomposition type. Should no match be found, return to step 2
to identify closely related characteristics or types. When multiple features or types align, proceed to step 4.

Step 4: Using the decomposition types selected in Step 3, assess the time and cost details from Table 3 related to
these choices to conclusively determine the viable decomposition types.

Step 5: Generate microservices from the monolithic system by applying the chosen decomposition types.

4.2 Formal Representation of the Algorithm

This algorithm defines a strategy for identifying a suitable decomposition approach from monolithic to microservice

Input:

 MonolithicSoftware: A monolithic application description, with features and types.

Output:

 DecompositionTypes: Suitable microservice decomposition strategies for the provided MonolithicSoftware.

Algorithm:

1. Identify Monolithic Features and Types:
o Function: GetMonolithicDetails (MonolithicSoftware)

 Analyzes MonolithicSoftware to extract its features (Features) and types (Types).
o Return value: (Features, Types)

2. Iterate Through Decomposition Table:
o Function: FindPotentialDecompositions (Features, Types, DecompositionTable)

 DecompositionTable is a data structure containing information about decomposition
types.

 Iterates through each decomposition type (DecompositionType) in DecompositionTable.
 Compares the features and types of DecompositionType and monolithic

applications.
 If completely match, then add DecompositionType to a list of potential

decompositions (PotentialDecompositions).
 If a partial match (closely related features or types) is found, add

DecompositionType to a separate list for further consideration (PartialMatches).

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 96

3. Select Decomposition Type:
o Function: ChooseViableDecomposition (PotentialDecompositions, PartialMatches,

CostTimeTable)
 CostTimeTable is a data structure containing information about the cost and time

associated with each decomposition type.
 If PotentialDecompositions has a single entry (DecompositionType), return it as

the chosen decomposition.
 Otherwise, if PotentialDecompositions is empty and PartialMatches is not empty:

 Iterate through each DecompositionType in PartialMatches.
 Use CostTimeTable to retrieve the estimated cost and time for each

step involved in DecompositionType.
 Based on cost and time constraints, select a single DecompositionType

as the chosen decomposition and return it.
 If PotentialDecompositions and PartialMatches are empty, return "No suitable

decomposition found."
4. Generate Microservices:

o Function: GenerateMicroservices (MonolithicSoftware, DecompositionType)
 Uses the chosen DecompositionType to guide breaking down the MonolithicSoftware

into individual microservices.
5. Output:

o The algorithm outputs the DecompositionTypes returned by ChooseViableDecomposition or "No
suitable decomposition found" if no viable option exists.

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 97

Fig. 1. Flowchart of the algorithm

4.3 Algorithm Evaluation and Complexity

The proposed algorithm offers a structured approach to breaking down a monolithic system into microservices. Its
effectiveness hinges on accurate initial analysis in Step 1 and the comprehensiveness of information in Tables 2 and
3. Success also relies on the implementer's expertise, particularly in assessing time and cost details in Step 4, and on
the algorithm's accuracy in identifying relevant features and decomposition choices. Scalability depends on input
data complexity and clarity, as well as decision-making efficiency. With organization, documentation, and

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 98

automation, the algorithm can handle larger systems. Optimality is influenced by initial analysis accuracy, input data
relevance, and decision-making effectiveness. Continuous refinement improves optimality. Robustness is enhanced
through thorough feature identification, clear input data, and flexible decision-making. Overall, the algorithm
efficiently selects decomposition techniques, as proven mathematically. The algorithm's performance depends
heavily on system size. In the worst case, the time it takes grows quadratically (O(M×N)) - meaning if you double
the number of features (M) and rules (N), the runtime could quadruple. This makes it less ideal for massive systems
with ens of thousands of features. Memory usage grows linearly (O(M+N+P+S)), where P includes extra processing
data and S is your final microservice count, though you'll need substantial temporary storage. Generating the actual
microservices (Step 5) is efficient (O(S)), but complex system dependencies can create unexpected slowdowns. For
larger implementations, we recommend speed boosts like parallel processing or machine learning shortcuts, though
the sweet spot remains medium-sized systems where the approach works most efficiently.

4.4 Recommendation and Discussion

Migrating to microservices from monolithic decomposition is a crucial part. It enhances scalability by scaling each
service to scale independently. Isolation is also provided by microservices, which limit the failures or issues within
specific services, minimizing a full system down. This approach encirclements technology diversity, which
encourages suitable technology for each service to optimize performance and development cost. It also enhances
updates, maintenance, and bug fixing for individual services without impacting the entire system. By decomposing
into several services, parallel work can be done. Different teams work on different services that increase adaptability,
innovation with specific services, reduce overall complexity, and improve the system's comprehensibility, debugging,
and extensibility. So, the decomposition phase is important, and it is the foundation for a more modular, scalable,
and adaptable system. To gain this advantage, it requires careful planning, dependency consideration, data
management, and full architecture to confirm successful migration of the system

4.5 Limitations and Future Directions

This research helps developers break monoliths into microservices, but it has limits. The algorithm gets slow with
very large systems. Matching features manually can be subjective. Time and cost estimates are helpful, but real
projects may differ. It also focuses mostly on technical issues, not team or skill challenges. Future improvements
could make it better. Machine learning could automate feature matching. The framework should address team and
process problems too. More real-world testing would make it more practical. Combining code analysis with runtime
data might improve results. These changes could make the framework even more useful for developers.

5. CONCLUSION

Within this research paper, our focus revolves around an in-depth analysis of various decomposition processes
pivotal for the transition from a monolithic architecture to microservices. This approach aims to determine the most
fitting decomposition process for this migration. To ensure a clear perspective, we engage multiple software experts,
tapping into their expertise. As a conclusion of this collaborative effort, we meticulously designed an algorithm to
select the most suitable decomposition method. This research paper makes a strong contribution by offering a
thorough analysis, consulting with experts, developing a practical algorithm, and focusing on efficiency. Its impact
extends beyond academic discourse, aiming to provide actionable insights for practitioners in the field of software
architecture transition. The research paper focuses on numerous decomposition approaches, acknowledging that it
doesn't encompass all existing types. Additionally, it recognizes the vast spectrum of decomposition systems
available. The paper assesses software characteristics based on input from various experts. It suggests the potential
for involving additional experts to enhance result accuracy, providing a direction for further research. Furthermore,
the inclusion of more software professionals could refine time and cost estimations, especially when supplemented
by practical examples.

References

[1] L. Rushani and F. Halili, “Differences between service-oriented architecture and microservices architecture,” Int. J. Natural Sciences: Current
and Future Research Trends (IJNSCFRT), vol. 13, no. 1, pp. 30-48, 2022.

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 99

[2] T. Cerny, M. J. Donahoo, and J. Pechanec, “Disambiguation and comparison of SOA, microservices and self-contained systems,” in Proc. Int.
Conf. Research in Adaptive and Convergent Systems (RACS), 2017.

[3] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for microservices: a systematic mapping study,” in Proc. 8th Int. Conf. Cloud
Computing and Services Science (CLOSER), Funchal, Portugal, Mar. 2018, pp. —.

[4] M. Richards, Microservices vs. service-oriented architecture. Sebastopol, CA: O’Reilly Media, 2015, pp. 22-24.

[5] J. Bogner, A. Zimmermann, and S. Wagner, “Analyzing the relevance of SOA patterns for microservice-based systems,” in ZEUS 2018: 10th
Central European Workshop on Services and their Composition, Dresden, Germany, Feb. 2018, CEURWorkshop Proc., vol. 2072, pp. 9-16.

[6] V. Raj and R. Sadam, “Patterns for migration of SOA based applications to microservices architecture,” J. Web Eng., vol. 20, no. 5, pp. 1229-
1246, 2021.

[7] D. Shadija, M. Rezai, and R. Hill, “Towards an understanding of microservices,” in Proc. 23rd Int. Conf. Automation and Computing (ICAC),
Huddersfield, UK, Sept. 2017, pp. 1-6.

[8] V. Raj and S. Ravichandra, “Microservices: A perfect SOA-based solution for enterprise applications compared to web services,” in Proc. 3rd
IEEE Int. Conf. Recent Trends in Electronics, Information & Communication Technology (RTEICT), May 2018, pp. 1531-1536.

[9] V. Raj and R. Sadam, “Evaluation of SOA-based web services and microservices architecture using complexity metrics,” SN Comput. Sci.,
vol. 2, pp. 1-10, 2021.

[10] R. Xu, S. Y. Nikouei, Y. Chen, E. Blasch, and A. Aved, “Blendmas: A blockchain-enabled decentralized microservices architecture for smart
public safety,” in Proc. IEEE Int. Conf. Blockchain, July 2019, pp. 564-571.

[11] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casallas, S. Gil, C. Valencia, A. Zambrano, and M. Lang, “Cost
comparison of running web applications in the cloud using monolithic, microservice, and AWS Lambda architectures,” Service Oriented Comput.
Appl., vol. 11, pp. 233-247, 2017.

[12] C. Wu, Q. Peng, Y. Xia, Y. Jin, and Z. Hu, “Towards cost-effective and robust AI microservice deployment in edge computing
environments,” Future Gener. Comput. Syst., vol. 141, pp. 129-142, 2023.

[13] F. Tapia, M. Á. Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulkeridis, “From monolithic systems to microservices: A comparative study
of performance,” Appl. Sci., vol. 10, no. 17, p. 5797, 2020.

[14] G. Blinowski, A. Ojdowska, and A. Przybyłek, “Monolithic vs. microservice architecture: A performance and scalability evaluation,” IEEE
Access, vol. 10, pp. 20357-20374, 2022.

[15] C. F. Fan, A. Jindal, and M. Gerndt, “Microservices vs serverless: A performance comparison on a cloud-native web application,” in Proc.
CLOSER, 2020, pp. 204-215.

[16] W. Luz, E. Agilar, M. C. de Oliveira, C. E. R. de Melo, G. Pinto, and R. Bonifácio, “An experience report on the adoption of microservices
in three Brazilian government institutions,” in Proc. XXXII Brazilian Symp. Software Eng., Sept. 2018, pp. 32-41.

[17] TS2.Space, “Microservices case studies: Success stories from leading companies,” Available: https://ts2.space/en/microservices-case-studies-
success-stories-from-leading-companies/. [Accessed: Jul. 30, 2024].

[18] The Open Group, “Microservices architecture working paper,” Available: https://www.opengroup.org/soa/source-book/msawp/p5.htm.
[Accessed: Jul. 25, 2024].

[19] D. Kuryazov, D. Jabborov, and B. Khujamuratov, “Towards decomposing monolithic applications into microservices,” in Proc. 14th IEEE
Int. Conf. Application of Information and Communication Technologies (AICT), Oct. 2020, pp. 1-4.

[20] D. Taibi and K. Systä, “From monolithic systems to microservices: A decomposition framework based on process mining,” 2019.

[21] J. Kazanavičius and D. Mažeika, “Migrating legacy software to microservices architecture,” in Proc. Open Conf. Electrical, Electronic and
Information Sciences (eStream), Apr. 2019, pp. 1-5.

[22] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, and D. Kröger, “Microservice decomposition via static and dynamic analysis of the
monolith,” in Proc. IEEE Int. Conf. Software Architecture Companion (ICSA-C), Mar. 2020, pp. 9-16.

[23] J. Kazanavičius and D. Mažeika, “Analysis of legacy monolithic software decomposition into microservices,” 2020.

https://ts2.space/en/microservices-case-studies-success-stories-from-leading-companies/
https://ts2.space/en/microservices-case-studies-success-stories-from-leading-companies/
https://www.opengroup.org/soa/source-book/msawp/p5.htm
https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 100

[24] N. Ivanov and A. Tasheva, “A hot decomposition procedure: Operational monolith system to microservices,” in Proc. Int. Conf. Automatics
and Informatics (ICAI), Sept. 2021, pp. 182-187.

[25] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From monolith to microservices: A classification of refactoring approaches,” in Proc.
DEVOPS 2018, Chateau de Villebrumier, France, Mar. 2018, Revised Selected Papers 1, Springer, pp. 128-141.

[26] K. Sellami, M. A. Saied, and A. Ouni, “A hierarchical DBSCAN method for extracting microservices from monolithic applications,” in Proc.
26th Int. Conf. Evaluation and Assessment in Software Engineering (EASE), June 2022, pp. 201-210.

[27] T. Lopes and A. R. Silva, “Monolith microservices identification: Towards an extensible multiple strategy tool,” in Proc. 20th IEEE Int. Conf.
Software Architecture Companion (ICSA-C), Mar. 2023, pp. 111-115.

[28] J. Lourenço and A. R. Silva, “Monolith development history for microservices identification: A comparative analysis,” arXiv preprint
arXiv:2212.11656, 2022.

[29] S. Rochimah and B. Nuralamsyah, “Decomposing monolithic to microservices: Keyword extraction and BFS combination method to cluster
monolithic’s classes,” J. RESTI, vol. 7, no. 2, pp. 263-270, 2023.

[30] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From monolith to microservices: A classification of refactoring approaches,” in Proc.
DEVOPS 2018, Chateau de Villebrumier, France, Mar. 2018, Revised Selected Papers 1, Springer, pp. 128-141.

[31] O. Al-Debagy and P. Martinek, “A microservice decomposition method through using distributed representation of source code,” Scalable
Comput.: Pract. Exp., vol. 22, no. 1, pp. 39-52, 2021.

[32] A. F. A. Freire, A. F. Sampaio, L. H. L. Carvalho, O. Medeiros, and N. C. Mendonça, “Migrating production monolithic systems to
microservices using aspect-oriented programming,” Softw.: Pract. Exp., vol. 51, no. 6, pp. 1280-1307, 2021.

[33] A. Selmadji, A. D. Seriai, H. L. Bouziane, R. O. Mahamane, P. Zaragoza, and C. Dony, “From monolithic architecture style to microservice
one based on a semi-automatic approach,” in Proc. IEEE Int. Conf. Software Architecture (ICSA), Mar. 2020, pp. 157-168.

[34] T. Lopes and A. R. Silva, “Monolith microservices identification: Towards an extensible multiple strategy tool,” in Proc. 20th IEEE Int. Conf.
Software Architecture Companion (ICSA-C), Mar. 2023, pp. 111-115.

[35] M. Cojocaru, A. Uta, and A. M. Oprescu, “MicroValid: A validation framework for automatically decomposed microservices,” in Proc. IEEE
Int. Conf. Cloud Computing Technology and Science (CloudCom), Dec. 2019, pp. 78-86.

[36] Z. Li, Y. Bo, and H. Xiao, “PF4Microservices: A decomposition scheme for microservices based on problem frames,” arXiv preprint
arXiv:2207.04586, 2022.

[37] O. Al-Debagy and P. Martinek, “Dependencies-based microservices decomposition method,” Int. J. Comput. Appl., vol. 44, no. 9, pp. 814-
821, 2022.

[38] M. Brito, J. Cunha, and J. Saraiva, “Identification of microservices from monolithic applications through topic modelling,” in Proc. 36th
Annu. ACM Symp. Applied Computing, Mar. 2021, pp. 1409-1418.

[39] K. Sellami, A. Ouni, M. A. Saied, S. Bouktif, and M. W. Mkaouer, “Improving microservices extraction using evolutionary search,” Inf.
Softw. Technol., vol. 151, p. 106996, 2022.

[40] V. Faria and A. R. Silva, “Code vectorization and sequence of accesses strategies for monolith microservices identification,” in Proc. Int.
Conf. Web Eng., Cham, Switzerland: Springer, June 2023, pp. 19-33.

[41] M. H. Hasan, M. H. Osman, N. I. Admodisastro, and M. S. Muhammad, “A quality-driven framework for decomposing legacy monolith
applications to microservice architecture,” 2023.

[42] J. Zhao and K. Zhao, “Applying microservice refactoring to object-oriented legacy system,” in Proc. 8th IEEE Int. Conf. Dependable
Systems and Their Applications (DSA), Aug. 2021, pp. 467-473.

[43] S. T. Ali, J. Long, V. K. Khatri, and M.A. Khuhro, “An approach to break down a monolithic app into microservices,” —.

[44] R. X. C. de Jesus, “From monoliths to microservices: automating service boundary detection,” 2021.

[45] F. Freitas, A. Ferreira, and J. Cunha, “A methodology for refactoring ORM-based monolithic web applications into microservices,” J.
Comput. Lang., vol. 75, p. 101205, 2023.

[46] T. C. K. Arachchi, “Process of conversion of monolithic application to microservices-based architecture,” Ph.D. dissertation, 2021.

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 101

Appendix A

SL# Monolithic Software Characteristics Monolithic Software Example
1 Modular Architecture.

Component-Based Design
Clear Component Boundaries
Component Reusability
Improved Maintainability
Component Ownership

E-commerce applications
Content management systems
Customer relationship management (CRM) systems
Enterprise resource planning (ERP) systems
Social networking applications
Online gaming applications

2 Event-Driven Architecture
Complex Event Processing
Audit and Compliance Needs
Real-time Data Processing
Distributed System Needs

E-commerce platforms
Customer relationship management (CRM) systems
Enterprise resource planning (ERP) systems.
Financial trading systems.

3 Well-Defined Business Domains
Complex and Diverse Functionality
Isolated Business Logic
Independent Business Processes

E-commerce applications
Customer relationship management (CRM) systems
Enterprise resource planning (ERP) systems
Banking and financial applications

4 High Complexity
Performance Bottlenecks
Resource Intensive
High Dependency
Redundancy and Duplication

Social networking applications
Online gaming applications
Banking and financial applications
Healthcare applications
Manufacturing applications

5 Business Domain Complexity
Well-Defined Business Capabilities
Independent Business Units
Scalability and Performance Isolation
Clear Service Boundaries

E-commerce platforms
Online banking systems
Airline reservation systems
Social media platforms
Content management systems

6 Well-defined domains
Modular structure
Clear domain boundaries
Domain expertise
Team collaboration

Large-scale E-commerce Platforms
Financial Systems
Enterprise Resource Planning (ERP) Systems
Healthcare Information Systems
Supply Chain Management Systems

7 Well-Defined Functional Modules
Separation of Concerns
Third-Party Integrations
Integration Points
Consumed by multiple channels

E-commerce platforms
Online banking systems
Content management systems
Enterprise resource planning (ERP) systems
Customer relationship management (CRM) systems

8 High Technical Debt
Outdated Technologies
Complex Legacy Code
High Technical Debt Impact
Lack of Documentation
Regulatory Compliance

Enterprise Legacy Systems
E-commerce Platforms
Content Management Systems (CMS)
Financial Systems
Healthcare Information Systems
Government Software

9 Data-Intensive Applications
Complex Data Models
High Data Volume
Data Integration
Data Processing Workflows
Isolation of Data Access
Data Security and Compliance

Real-time analytics systems
Machine learning systems
Fraud detection systems
Financial trading systems
Reservation systems
Order management systems
Logistics and Supply Chain Management Systems

10 Complex Business Workflows
Modular Business Logic
Clearly Defined Business Processes
Highly Interconnected Components
Isolation of Critical Processes

Manufacturing Execution Systems (MES)
Workflow Management Systems
Project Management Software
Supply Chain Management Systems
Customer Service Ticketing Systems

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 102

11 Has well-defined user roles
Has complex user interfaces
Diverse user requirements
Evolving user experiences
Cross-functional teams
Integration with third-party systems
User-driven features

Banking applications
Content management systems (CMS)
Customer Relationship Management (CRM)
Healthcare Information Systems
Human Resources Management Systems (HRMS)
Booking and Reservation Systems
E-learning and Education Systems

12 Complex and Tightly Coupled Components
Technology Stack Migration
Built using different technologies
Has well-defined technical layers
Has complex technical dependencies

Legacy Enterprise Systems
Systems with Multiple Integration Points
Monolithic Web Applications
Complex Data Processing Systems
Systems with Multiple Communication Protocols

13 Complex Interactions and Dependencies
Non-Trivial Functional Separation
Data-Intensive Systems
Need for Data-Driven Decomposition
Gradual Modernization

Geospatial Information Systems (GIS)
Location-based Services
Environmental Monitoring Systems
Infrastructure Planning Systems
Logistics and Supply Chain Management

14 Diverse Functionality
Parallel Development
Selective Modernization
Gradual Transition to Microservices
Has well-defined business capabilities

Financial Software
Business Intelligence and Analytics Tools
Predictive Maintenance Systems
Simulation and Modeling Software
E-commerce Platforms with Varied Sales Strategies

15 Applications with Modular Features
Applications with Frequent Updates
Applications with High Availability
Requirements
Applications with Multiple Technology Stacks
Applications with Diverse User Bases
Well-documented development history
Clear separation of concerns

Legacy systems
E-commerce application
Banking application
Healthcare application
Enterprise Systems

16 Lack of Clear Modular Structure
Keyword-Rich Codebase
Interconnected Classes
Limited Prior Documentation
Incremental Decomposition
Complex Business Logic
Well-defined class structure
Strong relationships between classes
No external dependencies
Complex and Large Codebases
Lack of Clear Separation of Concerns
Heterogeneous Functionalities
Poor Code Documentation
Codebase is Not Easily Refactored

E-commerce platforms
Content management systems (CMS)
Enterprise resource planning (ERP) systems
Customer relationship management (CRM) systems
Order management systems (OMS)
Inventory management systems (IMS)
Billing and payment systems
Fraud detection systems
Product recommendation systems
Content delivery networks (CDNs)
API management systems
Integration platforms as a service (iPaaS)
Business intelligence (BI) systems
Machine learning (ML) systems

17 Monoliths with Poor Code Quality
Systems with Clear Functional Boundaries
Systems with Frequent Updates
Interconnected Modules
Complex Data Models
High Availability and Fault Tolerance

Order management systems (OMS)
Inventory management systems (IMS)
Billing and payment systems
Fraud detection systems
Product recommendation systems
Content delivery networks (CDNs)

18 Codebases with Unclear Modularization
Applications with Diverse Functionality
Applications with Multiple Modules
Applications with Limited Documentation
Codebases with High Technical Debt
Applications with Evolving Business

E-commerce platforms
Content management systems (CMS)
Enterprise resource planning (ERP) systems
Customer relationship management (CRM) systems
Order management systems (OMS)
Inventory management systems (IMS)

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 103

Requirements
Systems with Extensive Interdependencies
No external dependencies

Billing and payment systems
Content delivery networks (CDNs)

19 Monolithic Systems with Cross-Cutting
Concerns
Security and Compliance Requirements
Applications with Frequent Updates
Interconnected Modules
Reducing Code Duplication

Enterprise resource planning (ERP) systems
Customer relationship management (CRM) systems
Content management systems (CMS)
E-commerce platforms
Real-time systems

20 Applications with Diverse User Bases
Applications with Evolving Business
Requirements
Applications with Poor Maintainability
Applications with Performance Challenges

Enterprise resource planning (ERP) systems
Content delivery networks (CDNs)
Integration platforms as a service (iPaaS)
Machine learning (ML) systems

21 Applications with Poor Scalability
Diverse Functionalities
Complex Business Logic
Frequent Updates and Changes
Applications with Poor Maintainability
Resource-Intensive Operations

Content management systems (CMS)
Enterprise resource planning (ERP) systems
Order management systems (OMS)
Inventory management systems (IMS)
Billing and payment systems
Fraud detection systems

22 Diverse Functionalities
Complex Business Logic
Frequent Updates and Changes
Resource-Intensive Operations

Enterprise resource planning (ERP) systems
E-commerce platforms
Content management systems (CMS)
Social media platforms

23 Multi-Functional Applications
Resource-Intensive Operations
Applications with Poor Modularity
Custom Business Applications
Safety-Critical Systems
Tightly Coupled Modules

Enterprise resource planning (ERP) systems
E-commerce platforms
Content management systems (CMS)
Social media platforms
Enterprise software
Embedded systems

24 Well-defined class structure
Strong relationships between classes
No external dependencies
Multi-Functional Applications
Applications with Scalability Challenges
Complex Business Logic
Applications with Poor Modularity

Web applications
Desktop applications
Microservices
Large Enterprise Applications
Legacy Systems
Custom Business Applications
Safety-Critical Systems

25 The large corpus of text
Well-defined topic structure
No external dependencies
Large codebase
Well-defined domain
Heterogeneous functionality
Incremental refactoring

Enterprise Resource Planning (ERP) Systems
Content Management Systems (CMS)
E-commerce Platforms
Healthcare Information Systems
Banking and Financial Systems
Manufacturing and Supply Chain Systems
Customer Relationship Management (CRM) Software

26 Complex dependencies
Well-defined fitness function
Limited Technology Stack
Unclear boundaries
Evolving requirements
Incremental improvement
Limited documentation
Cross-functional teams

Enterprise resource planning (ERP) systems
E-commerce platforms
Content management systems (CMS)
Social media platforms
Legacy Systems
Scientific and Research Software
Custom Business Applications
Financial Systems

27 Well-defined domain
Complex dependencies
Sequential Execution
Lack of Parallelism

Large and Complex Enterprise Applications
Legacy Systems
Scientific and Research Software
Custom Business Applications

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 104

Access Patterns
Performance Profiling
Compatibility Considerations

Content Management Systems (CMS)
E-commerce Platforms
Financial Systems

28 Large codebase
Well-defined quality attributes
Complex dependencies
Maintenance Challenges
Technology Stack Heterogeneity
Performance Bottlenecks

Enterprise Resource Planning (ERP) Systems
Customer Relationship Management (CRM) Systems
Healthcare Information Systems
E-commerce Platforms
Financial Systems
Manufacturing and Supply Chain Systems

29 Large codebase
Well-defined domain
Loosely coupled components
Clear boundaries between components
Isolation of Faults
Rapid Development and Deployment
Resource Efficiency
Service Reusability

Enterprise resource planning (ERP) systems
Content management systems (CMS)
Banking and financial systems
Telecom systems
Large Enterprise Systems
E-commerce Platforms
Content Management Systems (CMS)
Manufacturing and Supply Chain Systems

30 Modular Structure
Clear Functional Boundaries
Technological Diversity
Isolation of Faults
Improved Maintainability
Rapid Development and Deployment
Evolving Requirements

Enterprise resource planning (ERP) systems
E-commerce platforms
Content management systems (CMS)
Social media platforms
Banking and financial systems
Healthcare systems
Telecom systems

31 Modular Structure
Clear Functional Boundaries
Business Logic Separation
Limited Cross-Cutting Concerns
Well-Defined Interfaces
Maintainability Challenges
Technological Diversity

Enterprise resource planning (ERP) systems
E-commerce platforms
Content management systems (CMS)
Social media platforms
Banking and financial systems
Healthcare systems
Telecom systems

32 Complexity and Size
Separation of Concerns
Modularization Potential
Limited Cross-Cutting Concerns
Outdated Technology Stack

Content management system (CMS)
Enterprise resource planning (ERP)
Customer relationship management (CRM)
Social media platform
E-learning platform

33 Modular Monoliths
Layered Architectures
Service-Oriented Monoliths
Separation of Concerns
Microservices-Ready Monoliths
Large and Complex Monoliths

Enterprise resource planning (ERP) systems
E-commerce platforms
Content management systems (CMS)
Social media platforms
Banking and financial systems
Telecom systems

Appendix B

Sl# Steps Applied in Decomposition Type Time Required Cost Required
1 1. Recognize the fundamental components. From Days to

Month
Employee remuneration

2. Streamline and improve the components. From Week to
Months

Cost related to Refactoring and
regression testing.

3. Determine the dependencies between
components.

From Days to Week Employee remuneration

4. Categorize components into groups. From Days to Week categorization effort and expertise cost

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 105

2 1. Gather event logs. From a few days to
several weeks

Cost of log collection and log storage
and cost of used tools

2. Extract insights from the event logs. From week to
months

Cost of log mining, analysis tools, or
software.

3. Determine microservices. From Several weeks
to months

Cost of software architect,
documentation effort, and tool and
technology

3 1. Recognize the key business functions. From a few weeks
to a couple of
months

Cost related to remuneration of
analysts, domain experts, and
stakeholders

2. Break down these business functions into
microservices.

From several
months to a year

Cost related to development resources,
new technology adoption, and
infrastructure changes

3. Pinpoint the interrelationships among
microservices.

From a few months
to a year or more

Cost related to analysis, design, and
development of APIs

4 1. Static examination From a few days to
months

Cost related to Tools and expertise

2. Dynamic assessment From week to
several months

Cost related to hardware, software
setting up test environments, automated
testing tools, and personnel to design,
execute, and analyze the tests.

3. Manual improvement From months to
year

the salaries and benefits of the
development team

5 1. Discover business capabilities. 2-4 weeks the salaries and benefits of the
development team

2. Break down business capabilities into
microservices.

4-8 weeks the salaries and benefits of the
development team

3. Recognize interdependencies among
microservices.

4-8 weeks the salaries and benefits of the
development team

6 1. Bounded contexts with ubiquitous
language.

Several weeks to
several months

the salaries and benefits of the
development team and the cost of
external resource

2. Identify and define Domains Several weeks to
several months

the salaries and benefits of the
development team and the price of
tools

3. Aggregates, entities, and value objects several months the salaries and benefits of the
development team and the price of
tools

7 1. Identify the logical components of the
monolithic system.

several weeks to a
few months

salaries of the team and external
consultant

2. Flatten or refactor the components into
smaller, more manageable units.

several months salaries and cost of tools or
technologies

3. Identify the dependencies between the
components.

several weeks to a
few months

the salaries and benefits of developers

4. Group the components into
microservices.

several weeks to a
few months

developer salaries and cost of resources
or tools

8 1. Assessment and Planning several weeks to a
few

salaries of the team and cost tools or
resources

2. Define Microservice Boundaries few weeks to a
couple of months

salaries of the expertise team

3. Prioritize Technical Debt several weeks Salaries of team and cost of
specialized tools for code analysis

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 106

4. Refactoring and Code Improvement several months to
years

salaries of the development team and
cost tooling or resources

9 1. Identify Core Data Entities several weeks Salary and benefits of domain experts
and developers

2. Map Data Relationships a few weeks to a
couple of months

Salary and benefits of domain experts
and developers

3. Define Data Boundaries several weeks Cost-related remuneration of developer
and architect hours needed.

4. Identify Data Access Patterns a few weeks Salary of developer and architect hours,
as well as cost of monitoring and
profiling tools

5. Group Functionality with Data Entities a few weeks Cost related to Developer and architect
hours

6. Prioritize and Plan Decomposition a few weeks to a
couple of months

Cost of project management and
development hours.

7. Extract Microservices several months to
over a year

Cost related to developer and QA
resources, infrastructure, and new
technologies or tools

10 1. Map Business Processes to Components several weeks Cost related to business analysts and
developers

2. Determine Dependencies a few weeks to a
couple of months

Cost related to developer and architect
hours and costs for tools.

3. Define Microservices Boundaries take several weeks Cost of architect and developer hours

4. Identify Data Requirements a few weeks Cost related to data architects and
developers

11 1. Identify User Personas and Use Cases a few months Cost related to research, user
interviews, and documentation

2. Create a User Flow Diagram a few weeks to a
couple of months

Remuneration of expertise of UX
designers and diagramming tools

3. Identify User-Centric Boundaries a few weeks to a
few months

Cost involvement of analysis and
documentation

4. Define Microservice Boundaries several months to a
year

Cost of architectural planning,
discussions, and potentially hiring
experienced architects

5. Data Modeling and Database Splitting several months Cost related to database expertise,
migration tools, and testing resources

1. Identify Technology Dependencies several weeks to a
few months

Costs involve analysis and
documentation resources

2. Define Technology-Oriented Boundaries several weeks to a
few months

Cost related to architecture planning,
discussions, and possibly hiring
experienced architects

3. Select Appropriate Microservice
Technologies

several weeks to a
few months

Cost of research, training, and potential
licensing fees for new technologies

4. Data and Database Consideration several months to a
year

Cost related to database experts,
migration tools, and potential data
synchronization mechanisms

5. Refactor and Isolate Components several months to a
year or more

Cost of resources, testing, and rewriting
or adapting code to fit the new
microservices architecture

13 1. Data Analysis and Preparation several weeks to a
few months

Cost related to resources for system
analysis, documentation, and hiring
experts

2. Feature Extraction several weeks Remuneration of engineering resources
and data scientists

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 107

3. Hierarchical DBSCAN Clustering several weeks to a
few months

Remuneration of data science and
machine learning expertise, as well as
the cost of software or libraries for
clustering

4. Determining Clustering Parameters a few weeks Remuneration of data scientists or
machine learning experts

5. Identify Microservice Boundaries several weeks to a
few months

Cost of architectural planning and
discussions

14 1. Data collection several weeks to a
few months

Cost related to resources for data
collection, documentation, and hiring
experts

2. Strategy selection few weeks to a
couple of months

Cost related to resources for strategy
evaluation, discussions, and potentially
consulting with experts

3. Microservices identification several months Costs involve resources with expertise
in software architecture

4. Evaluation a few weeks to
several months

Cost related to architectural evaluation,
testing, and potentially prototyping

15 1. Collect the development history several weeks or
even months

Remuneration of developers and
possibly data analysis experts.

2. Identify the microservices several weeks to
months

cost will depend on the expertise of the
team and the size of the codebase

3. Evaluate the microservices several weeks to
months

Cost related to the analysis and
decision-making process

4. Redesign the microservices several months Cost of the redesign

5. Migrate the code several months to
years

Remuneration of developers and tools
or automation is used.

16 1. Identify the classes several weeks to
months

Cost related to developers and
architects and tools for code analysis

2. Extract the keywords several weeks Cost related to developer data analysts
and automated tools

3. Cluster the classes several weeks Cost related to architect and developer
and tools for code analysis.

4. Identify the microservices several weeks to
months

Remuneration of expertise team.

5. Redesign the microservices several weeks to
months

Remuneration and benefits of
developers and architect.

6. Migrate the code several months to
years

Remuneration and benefits of
developers who are responsible for
rewriting and retesting code. Also, the
cost of migration tools or frameworks
are used.

17 1. Structural refactoring several months to
over a year

Remuneration of developers and
architects as well as the cost of any
tools or technologies required

2. Behavioral refactoring several months Remuneration of developers, architects,
and potentially domain experts. It may
also involve testing and validation
costs.

3.Data refactoring several months to
complete.

Remuneration and benefit of data
engineers or database administrators
and transformation. As well as the cost
of tools or technologies used for data
management.

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 108

18 1. Distributed Representation of Source
Code

several weeks to
months

Cost related to data scientists or
machine learning engineers as well as
the cost of any tools or computational
resources used.

2. Clustering several weeks to
months

Cost related to data scientists,
developers, or architects and the cost of
tools or libraries used for clustering

3. Evaluation several weeks to
months

Benefits of architects, developers, or
domain experts

19 1. Identify the concerns in the monolithic
application

several weeks to
months

Remuneration of developers, architects,
and domain experts and cost involve
tools or code analysis software

2. Create the microservices several months to
over a year

salaries of developers and the cost of
tools, or technologies required for the
microservices.

20 1. Analyze the monolithic application several weeks to
months

Benefits of expertise of software
architects and developers and cost of
tools or software

2. Define a quality function a few weeks to a
month

Benefits of expertise of architects

3. Identify the microservices several months to a
year or more

Benefits of expertise of software
architects and developers and cost of
testing and validation

21 1. Select the decomposition technique weeks to a couple of
months

Compensation of experts or consultants

2. Configure the Mono2Micro tool a few weeks to a
couple of months

licensing or subscription fees for the
Mono2Micro tool, as well as the time
and expertise required to configure and
customize the tool for your specific
application

3. Evaluate the microservices several months Remuneration of expertise of software
architects and developers. It may also
include testing and validation costs

22 1. Granularity checking several weeks to a
few months

compensation of experts or consultants

2. Coupling checking several weeks to
months

cost includes the time and expertise of
software architects and developers

3. Messaging checking several weeks to
months

time and expertise required to
implement messaging patterns and
potentially the cost of any messaging
infrastructure or tools

4. Security Checking several weeks to
months

Remuneration and benefit of
development and security teams

23 1. Problem Identification several weeks to
months

compensation of experts or consultants
and involve the cost of tools or
software

2. Problem Decomposition several months to a
year or more

Remuneration of expertise of software
architects and developers

3. Microservice Identification several months Remuneration of expertise of software
architects and developers

24 1. Identifying dependencies several weeks to a
few months

compensation of experts or consultants
and the cost of tools or software for
code analysis.

2. Clustering components several months to a
year

Remuneration and benefits of the
expertise of software architects and

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 109

developers.

3. Identifying microservices several months Benefits of expertise of software
architects and developers and cost of
tools or software

25 1. Extracting features several weeks to
several months

Benefits of the number of resources and
cost of tools and software

2. Building a topic model take several weeks The benefits of the expertise of the data
scientists or analysts and the tools or
software cost

3. Identifying microservices several weeks to
several months

The salary of the architects and
developers

26 1. Initialize the population few weeks The salary of architects, developers,
and data scientists and the cost of
specialized software or tools

2. Evaluate the solutions weeks to months Salary of expertise required to assess
each solution's suitability

3. Select the parents a few days or less. Minimal cost is associated with
selecting parents, as it's a
straightforward algorithmic process

4. Crossover a few weeks cost includes development time to
implement crossover operations and
potential computational resources for
simulation or testing

5. Mutation a few days cost includes development time to
analyze mutation operations and
potential computational resources for
simulation or testing

6. Repeat steps 2-5 As 2-5 As 2-5

27 1. Vectorize the code several weeks to
several months

Benefit of expertise required for code
analysis and vectorization and cost of
tools or software used for code analysis

2. Identify microservices weeks to months Benefits of architects and developers
cost of specialized software or tools for
clustering and analysis.

3. Consider the sequence of accesses weeks to several
months

Benefits of expertise and the cost of
monitoring tools or logging
infrastructure to gather data on runtime
interactions.

28 1. Analyze the legacy application several weeks to
several months

Benefits of software architects,
developers, and analysts who assess the
legacy application and cost of tools or
software for code analysis and
documentation.

2. Identify quality attributes several weeks Benefits of Expertise.

3. Decompose the application several weeks to
several months

Salary of software architects and
developers

29 1. Identify candidate microservices several weeks to
several months

Benefits of software architects and
developers

2. Refactor the classes several months or
more

Benefits of software developers

3. Design the microservices several weeks to
several months

Benefits of software architects and
developers and cost of tools or

https://www.ijcsejournal.org/


International Journal of Computer Science Engineering Techniques – Volume 9
Issue 5, September - October - 2025

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 110

frameworks for designing
microservices

30 1. Analyze the monolithic application several weeks to
months

salaries of the engineers and architects

2. Identify microservice candidates several weeks to
months

salaries of engineers, architects, and
possibly domain experts and cost of
tools or software for code analysis

3. Evaluate the microservice candidates several weeks to
months

salaries of engineers and architects
involved in the evaluation process

31 1. Model the application as a graph several weeks to
months

salaries of software architects and
engineers, and cost-specialized
modeling tools or software

2. Identify microservice candidates several weeks to
months

salaries of software architects,
engineers, and domain experts

3. Optimize the decomposition several weeks to
months

salaries of software architects and
engineers

32 1. Identify ORM entities several weeks to
months

salaries of developers and database
experts, and the cost of database
analysis tools

2. Group ORM entities several weeks to
months

salaries of developers, architects, and
domain experts

3. Refactor the application several months to
years

salaries of developers, architects,
testers, and project managers

33 1. Identification of microservice candidates weeks to a few
months

salaries of software architects,
developers, and domain experts, and
the cost of tools for code analysis and
documentation

2. Design of the microservice architecture several weeks to
several months

salaries of software architects,
designers, and developers

3. Development of the microservices several months to a
year or more

salaries of developers, testers, and
project managers

https://www.ijcsejournal.org/

