International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

SELECTING AN EFFECTIVE MICROSERVICES
DECOMPOSITION APPROACH: A DECISION
FRAMEWORK

*Md. Abdul Momin', M.M. Musharaf Hussain?, and Md. Ezharul Islam?
"Department of Computer Science Engineering, Jahangirnagar University
2Department of Computer Science Engineering, Jahangirnagar University
3Department of Computer Science Engineering, Jahangirnagar University

Email: momin99cse@gmail.com

Abstract: This research presents a comprehensive exploration of diverse microservices decomposition techniques. This
research identifies the sequential steps integral to each decomposition method through a meticulous study and analysis of
multiple techniques. Moreover, the paper integrates insights gleaned from a select group of experts. These experts offer
valuable perspectives on software characteristics and elucidate the types of example software ideally suited for distinct
decomposition types. They also validate the time and cost implications associated with each decomposition technique.
Drawing from these multifaceted insights, the paper culminates in creating an algorithm. This algorithm is intricately
designed based on collective knowledge and discussions surrounding software traits, such as suitability, time, and cost
considerations linked to various decomposition techniques. This algorithm helps developers choose the most effective
decomposition approach for microservices.

Keywords: Microservice, Monolithic, SOA, Decomposition, Domain Driven Design (DDD), AOP, DBSCAN

1. INTRODUCTION

In this section, the authors describe the problem, the main question, and try to find the answer. Microservices are a
service-oriented architecture pattern that breaks applications into small, independent service units, promoting
efficient development and scalability. SOA and MSA are service-based architectures that break down systems into
modular and self-contained services. Microservices focus on goals and replace ability, allowing new technologies to
be tried in isolated services. Smaller components make applications easier to build and maintain. MSA enables
independent service management. Loosely coupled software makes it easier to engage with open source. SOA
emphasizes sharing, while MSA minimizes it. MSA prefers choreography but aims to reduce it due to the high
coupling risks. SOA has an enterprise scope, while MSA focuses on application scope [1]. Monolithic, SOA, and
Microservices are architectural approaches for large-scale applications. SOA and MSA are both service-based
architectures that break down systems into smaller, more manageable services. It is suggested that MSA represents
the future direction of service-based architectures, while SOA becomes a legacy architecture. MSA is more flexible
and scalable than SOA, and it is better applicable to the ever-changing requirements of modern applications [2].
Microservices are smaller and more specialized than traditional SOA services. They're also more independent,
making them easier to build, test, deploy, and maintain in the long run. They also work well for web-based systems
that have clear, separate components. SOA and microservices are both architecturally service-based, with
differences in strengths and weaknesses. SOA is better suited for large, complex enterprise systems, and
microservices are appropriate for smaller, more agile applications [3]. Time and cost are two of the biggest
challenges facing organizations that are considering adopting a microservices architecture.

Problem Statement: The problem Statement of this research is that in the era of microservices architecture,
organizations face a critical challenge in determining the most effective approach for decomposing monolithic
systems into microservices. The absence of a standardized method for selecting decomposition strategies often leads
to ambiguity and suboptimal architectural choices. This research aims to address this gap by developing a
comprehensive decision framework that assists organizations and architects in systematically evaluating and
selecting the most suitable microservices decomposition approach. The framework will consider various factors
various factor related to the decomposition of monolithic applications.

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 89

mailto:momin99cse@
https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

Research Objective: The research objectives of this study are to conduct a comprehensive examination and analysis
of various decomposition approaches, delving into their respective implementation processes and methodologies. To
assess which decomposition methods are suitable for different software examples based on their specific
characteristics. Ultimately, choose a decomposition approach for transitioning from monolithic software to
microservices that optimizes both time and cost-effectiveness.

The study will be conducted in three phases:

i. Literature review: The initial stage will encompass a thorough examination of current research on
microservices architecture, focusing on the efficient breakdown of monolithic systems in terms of time
and cost-effectiveness.

ii. Experts' Opinion: During the second phase, experts' perspectives will be sought regarding the
transition from monolithic to microservices across multiple parameters.

fii. Algorithm Design: In the third phase, an algorithm will be crafted to select an effective decomposition
method efficiently.

The findings of this study will contribute to the body of knowledge on microservices architecture and time and cost-
effective implementation. The study will also provide practical guidance to organizations that are considering
adopting a microservices architecture.

Research Question: Here are some specific research questions that the study will address:
RQ1: Select the effective microservices decomposition approaches for different types of applications.

RQ2: Develop a decision framework to select the most appropriate microservices decomposition approach for a
specific application.

RQ3: A Way to evaluate the effectiveness of different microservices decomposition approaches.

In this study, a combination of quantitative and qualitative research methods is used. Quantitative methods will be
used to collect data on challenges and risks associated with microservices decomposition. Qualitative methods will
be used to increase a deeper understanding of these challenges and risks.

2. LITERATURE REVIEW

A critical step in microservices adoption is decomposing applications into cohesive services. A service, as defined by
[4], must encapsulate business capabilities, a clear interface, and a contract, though specifics on categorization and
ownership remain underexplored. While Bogner et al. [5] explore how traditional SOA patterns can be adapted for
microservices, their study falls short in one key area it doesn’t fully weigh the practical trade-offs, especially when it
comes to implementation costs or time investments. This leaves practitioners without clear guidance on whether
repurposing an SOA pattern is truly worth the effort in their specific context. Similarly, the authors of [6] provide a
useful survey of migration patterns from SOA to microservices, but their focus remains narrowly technical. Lots of
studies look at how microservices stack up against traditional monoliths or SOA architectures. For instance, [11]
quantifies infrastructure costs, showing microservices can reduce cloud expenses by up to 70% compared to
monoliths, while serverless (e.g., AWS Lambda) further cuts overhead. Performance evaluations are explored by [13]
and [14], which compare response times, scalability, and resource utilization, revealing microservices’ strengths in
modularity but potential latency in distributed workflows. [15] Extend this to serverless architectures, highlighting
context-dependent trade-offs in cloud environments. The debate between microservices and conventional SOA-
based web services is dissected by [8], which evaluates scalability, flexibility, and maintainability. Their analysis
includes real-world cases to illustrate practical implications, though it acknowledges that the "right" choice depends
on organizational context. Complementing this, [7] provides a foundational review of microservices architecture,
clarifying its role in modern software development and underscoring its advantages in agility and independent
deploy ability. Transitioning to microservices involves technical and organizational hurdles. Studies like [5] and [6]
do a good job explaining how to adapt patterns for microservices, but they miss the practical challenges - like how

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 90

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

these systems actually scale in big organizations. Luckily, we can learn from real-world examples: [16] shows how
Brazilian government agencies managed to reduce deployment risks and push updates faster, while [17] reveals how
companies like Amazon, Netflix and Uber used microservices to become more scalable and agile. Rainyday Grocer
[18] exemplifies cost-efficient scaling using CI/CD and DevOps, though balancing operational expenses remains a
consideration. Innovative applications of microservices are explored in niche domains. For example, [10] combines
blockchain with microservices to enhance security and transparency in public safety systems, while [12] optimizes
Al microservices on edge devices by analyzing latency-cost trade-offs. Complexity metrics, as studied by [9], offer
quantitative comparisons between SOA and microservices, assessing code and interaction intricacies to guide
architectural decisions. Despite extensive research, gaps persist. Many studies ([S], [6], [13]) prioritize technical
feasibility over socio-technical barriers (e.g., team structure, skill gaps). Cost-time trade-offs in migration ([5], [11])
and empirical validations of scalability ([16]) warrant deeper exploration. Future work could integrate organizational
factors with technical metrics to offer holistic guidance for practitioners. Most of the research out there on
microservices gets way too caught up in the technical details—how to chop up an app, optimize performance, all
that nerdy stuff. But what about the real-world messiness? Nobody’s talking about the hidden costs, the team drama,
or whether switching to microservices is even a smart move for most companies. Sure, you’ll find plenty of glossy
case studies about Amazon and Netflix pulling it off flawlessly—but where are the stories about the migrations that
blew up budgets, took years longer than planned, or just crashed and burned? It’s like reading Yelp reviews where
everyone’s either five stars or radio silence—nobody’s admitting when things went sideways. Others compare
microservices to monoliths but only look at performance, not security or maintenance nightmares. Plus, there’s
barely any solid advice on how to actually break down big systems without causing chaos, and almost no one talks
about doing it step by step instead of all at once. Bottom line? We need more practical, no-BS guidance that covers
not just code, but people, money, and risks—Dbecause right now, it’s too easy for companies to jump in and regret it
later.

3. RESEARCH METHODOLOGY

In this section, we examine various decomposition approaches tailored to specific characteristics and types of
monolithic software. Additionally, we outline the steps involved in decomposing monolithic software, including
estimated timeframes and costs based on expert opinions. All of these are detailed using three tables. Effectively
migrating to a microservice from a monolithic application is crucial for adopting a microservice architecture. A
well-structured decomposing method can facilitate this process. This study develops a comprehensive procedure for
effective microservice decomposition. Various factors such as application architecture, business requirements, and
technical limitations are considered here. The proposed methodology will be evaluated through real-world case
studies to assess its effectiveness in practical scenarios. The findings of this research will provide valuable insights
for organizations considering microservice adoption and guide their decomposition efforts. This research will
contribute to the advancement of microservice architecture research by introducing a systematic and practical
approach to microservice decomposition. Our methodology encompasses three distinct phases. In the initial phase,
we identify and analyze various decomposition processes, meticulously outlining their decomposition steps.
Subsequently, we conduct a comprehensive survey and engage in insightful interviews with a diverse group of
software professionals to carefully select the most suitable decomposition process for a specific set of software
characteristics and types. Additionally, we consider the time and cost implications associated with each
decomposition process step. Finally, we meticulously select the most appropriate decomposition process tailored to
the specific requirements.

In our preliminary stage, we examined 33 distinct approaches to the decomposition process, delineating their steps.
These various approaches are cataloged in Table 1, while the specific steps associated with each approach are
elaborated upon in Table 2.

TABLE 1. Decomposition Type

#Decomposition Type Description

1: Decomposition by software | This approach focuses on identifying cohesive, self-contained components
component and transforming them into individual microservices. Each microservice
encapsulates a specific software component's functionality and operates

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 91

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

independently [19].

2: Decomposition by Software
event log collection

A decomposition technique for monolithic applications that is based on
process mining. Process mining is a technique for extracting knowledge from
event logs, which are records of the activities that have taken place in a
system [20].

3: Decomposition by business
functionalities

Decomposition by business functionalities, also known as functional
decomposition, is a critical step in transitioning from a monolithic
architecture to a microservices architecture. This process involves breaking
down a large, monolithic application into smaller, independently deployable
microservices that are organized around specific business functionalities or
capabilities [21].

4: Decomposition by Analysis
involving both static and
dynamic aspects.

This decomposition process considers both the static, structural aspects of the
application (such as codebase, data schema, and dependencies) and the
dynamic aspects (such as runtime behavior and interactions) [22].

S: Decomposition based on
business capabilities

This approach involves identifying and isolating distinct business capabilities
within the monolith and then creating microservices around them [23].

6: Decomposition by Domain-
driven design (DDD)

Domain-driven design is an approach that focuses on modeling a system's
domain (its core business logic) and breaking it down into bounded contexts,
aggregates, and entities. When transitioning from a monolithic architecture to
microservices [24].

7: Decomposition by API-first
development

An API-first development approach is another strategy for achieving a more
modular and scalable architecture. API-first development focuses on
designing and implementing well-defined APIs as a foundation for building
and integrating services [24].

8: Decomposition by Technical
debt

Decomposing a monolithic application into microservices while addressing
technical debt is a challenging but essential process for ensuring the long-
term maintainability and scalability of your system. Technical debt refers to
the accumulation of suboptimal or hasty technical decisions made during the
development of your monolithic application [25].

9: Data-oriented decomposition

Data-oriented decomposition is an approach to transitioning from a
monolithic architecture to a microservices architecture that focuses on
breaking down the monolithic data store and its associated dependencies into
smaller, more manageable data services [25].

10: Process Oriented
decomposition

Process-oriented decomposition is an approach to transitioning from a
monolithic architecture to a microservices architecture that focuses on
breaking down the monolithic application's business processes into smaller,
more manageable microservices [25].

11: User-oriented
decomposition

User-oriented decomposition is an approach to transitioning from a
monolithic architecture to a microservices architecture that focuses on
breaking down the monolithic application's user-facing functionality into
smaller, more specialized microservices [25].

12: Technology-oriented
decomposition

A technology-oriented decomposition is an approach to transitioning from a
monolithic architecture to a microservices architecture that focuses on
breaking down the monolithic application based on the underlying
technologies or technical components it uses [25].

13: hierarchical DBSCAN
algorithm

Hierarchical DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) is an extension of the traditional DBSCAN clustering algorithm
that hierarchically organizes clusters [26].

14: Extensible Multiple Strategy
Tool approach

Creating an extensible multiple-strategy tool for decomposing a monolithic
application into microservices involves developing a flexible software system
that can accommodate various strategies and methods for decomposition [27].

15: decomposition based on the
application's development
history

Analyzing the development history of a monolithic application can provide
valuable insights for identifying potential candidates for microservices
decomposition. By examining the historical context, code changes, and
architectural decisions, you can make informed decisions about which parts
of the monolith should be extracted into microservices [28].

ISSN: 2455-135X

https://www.ijcsejournal.org/ Page 92

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

16: By Keyword Extraction and
BFS Combination Method to
Cluster Monolithic Classes

Decomposing a monolithic application's classes into clusters of microservices
using a combination of keyword extraction and breadth-first search (BFS) is a
complex but powerful approach. This method involves extracting keywords
from class names and code comments to identify related classes and then
using BFS to create clusters based on those relationships [29].

17: A Classification of
Refactoring Approaches

Refactoring approaches for transitioning from a monolithic architecture to a
microservices architecture can be classified into several categories based on
their focus and objectives [30].

18: Decomposition using
Distributed Representation of
Source Code

Decomposing a monolithic application into microservices using the
distributed representation of source code involves breaking down the large,
monolithic codebase into smaller, more manageable services that can operate
independently. This is a complex and multifaceted process that requires
careful planning and execution [31].

19: Decomposition by Aspect-
Oriented Programming

Aspect-oriented programming (AOP) is a programming paradigm that allows
you to modularize cross-cutting concerns, such as logging, security, and
transactions, which often span multiple modules in a monolithic application
[32].

20: Based on a semi-automatic
approach

A semi-automatic approach to decomposing a monolithic application into
microservices combines human expertise with automated tools and processes
[33].

21: Decomposition by an
extensible multiple strategy tool,
called Mono2Micro

The general idea behind such tools (Mono2Micro) is to automate the process
of identifying potential microservices, determining their boundaries, and
assisting with the extraction and refactoring of code [34].

22: Decomposition by
MicroValid: A validation
framework

MicroValid is a validation framework for automatically decomposed
microservices from monolithic applications. It is a tool that can help
developers to assess the quality of their microservices and to identify any
potential problems before they go into production. MicroValid uses a variety
of static analysis techniques to assess the quality of microservices [35].

23: Decomposition based on
Problem Frames

Decomposition based on Problem Frames is a systematic approach to
decomposing monolithic applications into microservices. It is based on the
idea that a monolithic application can be viewed as a collection of problem
frames, each of which represents a distinct business or technical problem
[36].

24: Dependencies-based
decomposition method

Decomposition based on Problem Frames (PFs) is a systematic approach to
decomposing monolithic applications into microservices. It is based on the
idea that a monolithic application can be viewed as a collection of PFs, each
of which represents a distinct business or technical problem [37].

25: Decomposition based on
topic modeling

Decomposition based on topic modeling is a relatively new approach to
decomposing monolithic applications into microservices. It is based on the
idea that the different parts of a monolithic application can be identified and
grouped together based on the topics to which they are related [38].

26: Decomposition uses
evolutionary search

It is a type of optimization algorithm that copies the process of natural
selection and finds optimal solutions to problems. It is often used in software
engineering to find optimal designs, architectures, and configurations.
Evolutionary search, often associated with genetic algorithms, can be applied
to find the best-fit microservice boundaries over time [39].

27: Decomposition using code
vectorization and sequence of
accesses

Decomposition using code vectorization and a sequence of accesses from
monolithic to microservice is a promising approach for automating the
decomposition of monolithic applications into microservices. Decomposition
using code vectorization and sequence of accesses is a promising approach
for automating the decomposition of monolithic applications into
microservices [40].

28: Decomposition using
Quality Driven Framework

A Quality Driven Framework for Decomposing Legacy Monolith
Applications to Microservice Architecture proposes a quality-driven
framework for decomposing monolithic applications into microservices. The
framework is designed to help organizations decompose their monolithic

ISSN: 2455-135X

https://www.ijcsejournal.org/ Page 93

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

applications into microservices in a way that preserves quality [41].

29: Decomposition Applying
Microservice Refactoring

This is a promising approach for refactoring legacy object-oriented systems to
microservices. It is based on some principles and has been evaluated on a
real-world system. Refactoring is a complex process, so no single approach
fits all systems. A specific approach will be used depending on the specific
characteristics of the legacy system [42].

30: Break down a Monolithic
based on cohesion, coupling, and
size.

Breaking down a monolithic application into microservices based on
cohesion, coupling, and size is a sound approach to achieving a well-
structured and maintainable microservices architecture [43].

31: Decomposition by detection
of service boundary

The technique for automating the detection of service boundaries is a
promising approach for breaking down monolithic applications into
microservices. It is based on sound principles and has been evaluated on a
number of real-world applications. The technique has been evaluated on a
number of real-world monolithic applications and is effective in detecting
service boundaries [44].

32: decomposing ORM-based
monolithic web applications

Decomposing ORM (Object-Relational Mapping)-based monolithic web
applications into microservices is a complex process that requires careful
planning and execution. Decomposing ORM-based monolithic web
applications from monolithic to microservices can be a challenging task, but
it can offer a number of benefits, such as improved scalability, reliability, and
maintainability [45].

33: Decomposition based on the
Architecture of the Monolithic
system

A process for converting a monolithic application to a microservices-based
architecture. Converting a monolithic application to a microservices-based
architecture can be a complex task, but it can offer a number of benefits, such

as improved scalability, reliability, and maintainability [46].

In the subsequent stage, we aimed to extract these motivations by carrying out an empirical study through a survey.
This study involved interviewing 16 practitioners who have embraced a microservices-based architectural style for a
minimum of two years. As for the profiles of our interviewees, they exhibit differences across multiple aspects. In
terms of their roles within their companies, our participants consisted of 30% software architects, 25% project
managers, 25% senior developers, 10% agile coaches, and 10% company CEOs. Each interviewee possessed a
minimum of five years of experience in software development, including the CEOs. In terms of the organizational
domain, our interviewees were distributed as follows: 28.57% in banking, another 28.57% in companies exclusively
creating and selling their software as a service (such as website builders, mobile app generators, and similar
services), 23.81% in consultancies focused on microservices migration, 9.52% in public administration IT
departments, and the remaining 9.52% in telecommunication companies. Table 2 serves as a comprehensive
summary curated by expert professionals, detailing the inherent characteristics of software alongside specific
examples that aptly correspond to distinct decomposition types. This collation encapsulates the collective insights
and expertise of these professionals, showcasing how different software attributes harmonize with particular
approaches to decomposition.

TABLE 2. Monolithic Software Characteristics and Type (Described in Appendix A)

Once more, we've outlined various steps for decomposing a monolithic system into microservices based on different
decomposition types. A crucial initial step for all types involves comprehending the monolithic system itself. The
effort and expenses involved in understanding this system depend on its scale, complexity, and the expertise of those
involved. Table 3 presents the decomposition steps derived from the research paper listed in Table 1. Additionally,
we've included time and cost estimations based on our expertise. However, these estimations are ideal scenarios and
may differ depending on the size and complexity of the monolithic system.

TABLE 3. Steps applied and time, and cost requirements of the decomposition process (Described in
Appendix B)

After analyzing the three aforementioned tables, we identified various decomposition types and their corresponding
software characteristics. Additionally, we pinpointed specific software types best aligned with particular

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 94

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

decomposition methods. Drawing insights from research papers and expert opinions, we inferred the time and cost
involved in breaking down monolithic software into microservices. Consequently, it's now imperative to introduce
an algorithm outlining the process of selecting suitable decomposition types for a monolithic system.

4. PROPOSED ALGORITHM AND EVALUATION

To decompose a monolithic system into microservices here we design an algorithm. Decomposing means breaking
down a large system into several smaller ones. Smaller systems enhance scalability, agility, and easy maintenance.
With the following steps large system can be effectively analyzed. After analyzing based on time and cost can
identify potential decomposition types. Finally, a microservice is generated.

4.1 Proposed Algorithm

Step 1: Find the features of monolithic software as well as its corresponding types.

Step 2: Go through Table 2 iteratively and attempt to correlate its contents with characteristics and types. When a
match is found, categorize and save it as a potential decomposition type.

Step 3: If a single match is identified, classify it as a decomposition type. Should no match be found, return to step 2
to identify closely related characteristics or types. When multiple features or types align, proceed to step 4.

Step 4: Using the decomposition types selected in Step 3, assess the time and cost details from Table 3 related to
these choices to conclusively determine the viable decomposition types.

Step 5: Generate microservices from the monolithic system by applying the chosen decomposition types.

4.2 Formal Representation of the Algorithm
This algorithm defines a strategy for identifying a suitable decomposition approach from monolithic to microservice
Input:

e MonolithicSoftware: A monolithic application description, with features and types.
Output:

o DecompositionTypes: Suitable microservice decomposition strategies for the provided MonolithicSoftware.
Algorithm:

1. Identify Monolithic Features and Types:
o Function: GetMonolithicDetails (MonolithicSoftware)
= Analyzes MonolithicSoftware to extract its features (Features) and types (Types).
o Return value: (Features, Types)
2. Iterate Through Decomposition Table:
o Function: FindPotentialDecompositions (Features, Types, DecompositionTable)
= DecompositionTable is a data structure containing information about decomposition
types.
= [terates through each decomposition type (DecompositionType) in DecompositionTable.
= Compares the features and types of DecompositionType and monolithic
applications.
= If completely match, then add DecompositionType to a list of potential
decompositions (PotentialDecompositions).
= [fa partial match (closely related features or types) is found, add
DecompositionType to a separate list for further consideration (PartialMatches).

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 95

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

3. Select Decomposition Type:
o Function: ChooseViableDecomposition (PotentialDecompositions, PartialMatches,
CostTimeTable)
= CostTimeTable is a data structure containing information about the cost and time
associated with each decomposition type.
= If PotentialDecompositions has a single entry (DecompositionType), return it as
the chosen decomposition.
= Otherwise, if PotentialDecompositions is empty and PartialMatches is not empty:
= [terate through each DecompositionType in PartialMatches.
= Use CostTimeTable to retrieve the estimated cost and time for each
step involved in DecompositionType.
= Based on cost and time constraints, select a single DecompositionType
as the chosen decomposition and return it.
= [f PotentialDecompositions and PartialMatches are empty, return "No suitable
decomposition found."
4. Generate Microservices:
o Function: GenerateMicroservices (MonolithicSoftware, DecompositionType)
= Uses the chosen DecompositionType to guide breaking down the MonolithicSoftware
into individual microservices.
5. Output:
o The algorithm outputs the DecompositionTypes returned by ChooseViableDecomposition or "No
suitable decomposition found" if no viable option exists.

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 96

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

=

Step 1: Extract monolithic
features & types

-

Step 2: lterate through
Table 2

X

No

Yes
il

Save as potential
decomposition type

Multiple matches?

Single Multiple
Confirm as decomposition Step 4: Evaluate time/cost
type from Table 3

S e

Step 5: Generate
microservices

|
Cona)

Fig. 1. Flowchart of the algorithm
4.3 Algorithm Evaluation and Complexity

The proposed algorithm offers a structured approach to breaking down a monolithic system into microservices. Its
effectiveness hinges on accurate initial analysis in Step 1 and the comprehensiveness of information in Tables 2 and
3. Success also relies on the implementer's expertise, particularly in assessing time and cost details in Step 4, and on
the algorithm's accuracy in identifying relevant features and decomposition choices. Scalability depends on input
data complexity and clarity, as well as decision-making efficiency. With organization, documentation, and

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 97

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

automation, the algorithm can handle larger systems. Optimality is influenced by initial analysis accuracy, input data
relevance, and decision-making effectiveness. Continuous refinement improves optimality. Robustness is enhanced
through thorough feature identification, clear input data, and flexible decision-making. Overall, the algorithm
efficiently selects decomposition techniques, as proven mathematically. The algorithm's performance depends
heavily on system size. In the worst case, the time it takes grows quadratically (O(MxN)) - meaning if you double
the number of features (M) and rules (N), the runtime could quadruple. This makes it less ideal for massive systems
with ens of thousands of features. Memory usage grows linearly (O(M+N+P+S)), where P includes extra processing
data and S is your final microservice count, though you'll need substantial temporary storage. Generating the actual
microservices (Step 5) is efficient (O(S)), but complex system dependencies can create unexpected slowdowns. For
larger implementations, we recommend speed boosts like parallel processing or machine learning shortcuts, though
the sweet spot remains medium-sized systems where the approach works most efficiently.

4.4 Recommendation and Discussion

Migrating to microservices from monolithic decomposition is a crucial part. It enhances scalability by scaling each
service to scale independently. Isolation is also provided by microservices, which limit the failures or issues within
specific services, minimizing a full system down. This approach encirclements technology diversity, which
encourages suitable technology for each service to optimize performance and development cost. It also enhances
updates, maintenance, and bug fixing for individual services without impacting the entire system. By decomposing
into several services, parallel work can be done. Different teams work on different services that increase adaptability,
innovation with specific services, reduce overall complexity, and improve the system's comprehensibility, debugging,
and extensibility. So, the decomposition phase is important, and it is the foundation for a more modular, scalable,
and adaptable system. To gain this advantage, it requires careful planning, dependency consideration, data
management, and full architecture to confirm successful migration of the system

4.5 Limitations and Future Directions

This research helps developers break monoliths into microservices, but it has limits. The algorithm gets slow with
very large systems. Matching features manually can be subjective. Time and cost estimates are helpful, but real
projects may differ. It also focuses mostly on technical issues, not team or skill challenges. Future improvements
could make it better. Machine learning could automate feature matching. The framework should address team and
process problems too. More real-world testing would make it more practical. Combining code analysis with runtime
data might improve results. These changes could make the framework even more useful for developers.

5. CONCLUSION

Within this research paper, our focus revolves around an in-depth analysis of various decomposition processes
pivotal for the transition from a monolithic architecture to microservices. This approach aims to determine the most
fitting decomposition process for this migration. To ensure a clear perspective, we engage multiple software experts,
tapping into their expertise. As a conclusion of this collaborative effort, we meticulously designed an algorithm to
select the most suitable decomposition method. This research paper makes a strong contribution by offering a
thorough analysis, consulting with experts, developing a practical algorithm, and focusing on efficiency. Its impact
extends beyond academic discourse, aiming to provide actionable insights for practitioners in the field of software
architecture transition. The research paper focuses on numerous decomposition approaches, acknowledging that it
doesn't encompass all existing types. Additionally, it recognizes the vast spectrum of decomposition systems
available. The paper assesses software characteristics based on input from various experts. It suggests the potential
for involving additional experts to enhance result accuracy, providing a direction for further research. Furthermore,
the inclusion of more software professionals could refine time and cost estimations, especially when supplemented
by practical examples.

References

[1] L. Rushani and F. Halili, “Differences between service-oriented architecture and microservices architecture,” Int. J. Natural Sciences: Current
and Future Research Trends (IINSCFRT), vol. 13, no. 1, pp. 30-48, 2022.

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 98

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

[2] T. Cerny, M. J. Donahoo, and J. Pechanec, “Disambiguation and comparison of SOA, microservices and self-contained systems,” in Proc. Int.
Conf. Research in Adaptive and Convergent Systems (RACS), 2017.

[3] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for microservices: a systematic mapping study,” in Proc. 8th Int. Conf. Cloud
Computing and Services Science (CLOSER), Funchal, Portugal, Mar. 2018, pp. —.

[4] M. Richards, Microservices vs. service-oriented architecture. Sebastopol, CA: O’Reilly Media, 2015, pp. 22-24.

[517. Bogner, A. Zimmermann, and S. Wagner, “Analyzing the relevance of SOA patterns for microservice-based systems,” in ZEUS 2018: 10th
Central European Workshop on Services and their Composition, Dresden, Germany, Feb. 2018, CEUR Workshop Proc., vol. 2072, pp. 9-16.

[6] V. Raj and R. Sadam, “Patterns for migration of SOA based applications to microservices architecture,” J. Web Eng., vol. 20, no. 5, pp. 1229-
1246, 2021.

[7] D. Shadija, M. Rezai, and R. Hill, “Towards an understanding of microservices,” in Proc. 23rd Int. Conf. Automation and Computing (ICAC),
Huddersfield, UK, Sept. 2017, pp. 1-6.

[8] V. Raj and S. Ravichandra, “Microservices: A perfect SOA-based solution for enterprise applications compared to web services,” in Proc. 3rd
IEEE Int. Conf. Recent Trends in Electronics, Information & Communication Technology (RTEICT), May 2018, pp. 1531-1536.

[9] V. Raj and R. Sadam, “Evaluation of SOA-based web services and microservices architecture using complexity metrics,” SN Comput. Sci.,
vol. 2, pp. 1-10, 2021.

[10] R. Xu, S.Y. Nikouei, Y. Chen, E. Blasch, and A. Aved, “Blendmas: A blockchain-enabled decentralized microservices architecture for smart
public safety,” in Proc. IEEE Int. Conf. Blockchain, July 2019, pp. 564-571.

[11] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casallas, S. Gil, C. Valencia, A. Zambrano, and M. Lang, “Cost
comparison of running web applications in the cloud using monolithic, microservice, and AWS Lambda architectures,” Service Oriented Comput.
Appl., vol. 11, pp. 233-247,2017.

[12] C. Wu, Q. Peng, Y. Xia, Y. Jin, and Z. Hu, “Towards cost-effective and robust AI microservice deployment in edge computing
environments,” Future Gener. Comput. Syst., vol. 141, pp. 129-142, 2023.

[13] F. Tapia, M. A. Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulkeridis, “From monolithic systems to microservices: A comparative study
of performance,” Appl. Sci., vol. 10, no. 17, p. 5797, 2020.

[14] G. Blinowski, A. Ojdowska, and A. Przybytek, “Monolithic vs. microservice architecture: A performance and scalability evaluation,” IEEE
Access, vol. 10, pp. 20357-20374, 2022.

[15] C. F. Fan, A. Jindal, and M. Gerndt, “Microservices vs serverless: A performance comparison on a cloud-native web application,” in Proc.
CLOSER, 2020, pp. 204-215.

[16] W. Luz, E. Agilar, M. C. de Oliveira, C. E. R. de Melo, G. Pinto, and R. Bonifacio, “An experience report on the adoption of microservices
in three Brazilian government institutions,” in Proc. XXXII Brazilian Symp. Software Eng., Sept. 2018, pp. 32-41.

[17] TS2.Space, “Microservices case studies: Success stories from leading companies,” Available: https://ts2.space/en/microservices-case-studies-
success-stories-from-leading-companies/. [Accessed: Jul. 30, 2024].

[18] The Open Group, “Microservices architecture working paper,” Available: https://www.opengroup.org/soa/source-book/msawp/p5.htm.
[Accessed: Jul. 25, 2024].

[19] D. Kuryazov, D. Jabborov, and B. Khujamuratov, “Towards decomposing monolithic applications into microservices,” in Proc. 14th IEEE
Int. Conf. Application of Information and Communication Technologies (AICT), Oct. 2020, pp. 1-4.

[20] D. Taibi and K. Systi, “From monolithic systems to microservices: A decomposition framework based on process mining,” 2019.

[21] J. Kazanavicius and D. Mazeika, “Migrating legacy software to microservices architecture,” in Proc. Open Conf. Electrical, Electronic and
Information Sciences (eStream), Apr. 2019, pp. 1-5.

[22] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, and D. Krdger, “Microservice decomposition via static and dynamic analysis of the
monolith,” in Proc. IEEE Int. Conf. Software Architecture Companion (ICSA-C), Mar. 2020, pp. 9-16.

[23]J. Kazanavicius and D. Mazeika, “Analysis of legacy monolithic software decomposition into microservices,” 2020.

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 99

https://ts2.space/en/microservices-case-studies-success-stories-from-leading-companies/
https://ts2.space/en/microservices-case-studies-success-stories-from-leading-companies/
https://www.opengroup.org/soa/source-book/msawp/p5.htm
https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

[24] N. Ivanov and A. Tasheva, “A hot decomposition procedure: Operational monolith system to microservices,” in Proc. Int. Conf. Automatics
and Informatics (ICAI), Sept. 2021, pp. 182-187.

[25]J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From monolith to microservices: A classification of refactoring approaches,” in Proc.
DEVOPS 2018, Chateau de Villebrumier, France, Mar. 2018, Revised Selected Papers 1, Springer, pp. 128-141.

[26] K. Sellami, M. A. Saied, and A. Ouni, “A hierarchical DBSCAN method for extracting microservices from monolithic applications,” in Proc.
26th Int. Conf. Evaluation and Assessment in Software Engineering (EASE), June 2022, pp. 201-210.

[27] T. Lopes and A. R. Silva, “Monolith microservices identification: Towards an extensible multiple strategy tool,” in Proc. 20th IEEE Int. Conf.
Software Architecture Companion (ICSA-C), Mar. 2023, pp. 111-115.

[28] J. Lourengo and A. R. Silva, “Monolith development history for microservices identification: A comparative analysis,” arXiv preprint
arXiv:2212.11656, 2022.

[29] S. Rochimah and B. Nuralamsyah, “Decomposing monolithic to microservices: Keyword extraction and BFS combination method to cluster
monolithic’s classes,” J. RESTI, vol. 7, no. 2, pp. 263-270, 2023.

[30] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From monolith to microservices: A classification of refactoring approaches,” in Proc.
DEVOPS 2018, Chateau de Villebrumier, France, Mar. 2018, Revised Selected Papers 1, Springer, pp. 128-141.

[31] O. Al-Debagy and P. Martinek, “A microservice decomposition method through using distributed representation of source code,” Scalable
Comput.: Pract. Exp., vol. 22, no. 1, pp. 39-52, 2021.

[32] A. F. A. Freire, A. F. Sampaio, L. H. L. Carvalho, O. Medeiros, and N. C. Mendonga, “Migrating production monolithic systems to
microservices using aspect-oriented programming,” Softw.: Pract. Exp., vol. 51, no. 6, pp. 1280-1307, 2021.

[33] A. Selmadji, A. D. Seriai, H. L. Bouziane, R. O. Mahamane, P. Zaragoza, and C. Dony, “From monolithic architecture style to microservice
one based on a semi-automatic approach,” in Proc. IEEE Int. Conf. Software Architecture (ICSA), Mar. 2020, pp. 157-168.

[34] T. Lopes and A. R. Silva, “Monolith microservices identification: Towards an extensible multiple strategy tool,” in Proc. 20th IEEE Int. Conf.
Software Architecture Companion (ICSA-C), Mar. 2023, pp. 111-115.

[35] M. Cojocaru, A. Uta, and A. M. Oprescu, “MicroValid: A validation framework for automatically decomposed microservices,” in Proc. IEEE
Int. Conf. Cloud Computing Technology and Science (CloudCom), Dec. 2019, pp. 78-86.

[36] Z. Li, Y. Bo, and H. Xiao, “PF4Microservices: A decomposition scheme for microservices based on problem frames,” arXiv preprint
arXiv:2207.04586, 2022.

[37] O. Al-Debagy and P. Martinek, “Dependencies-based microservices decomposition method,” Int. J. Comput. Appl., vol. 44, no. 9, pp. 814-
821, 2022.

[38] M. Brito, J. Cunha, and J. Saraiva, “Identification of microservices from monolithic applications through topic modelling,” in Proc. 36th
Annu. ACM Symp. Applied Computing, Mar. 2021, pp. 1409-1418.

[39] K. Sellami, A. Ouni, M. A. Saied, S. Bouktif, and M. W. Mkaouer, “Improving microservices extraction using evolutionary search,” Inf.
Softw. Technol., vol. 151, p. 106996, 2022.

[40] V. Faria and A. R. Silva, “Code vectorization and sequence of accesses strategies for monolith microservices identification,” in Proc. Int.
Conf. Web Eng., Cham, Switzerland: Springer, June 2023, pp. 19-33.

[41] M. H. Hasan, M. H. Osman, N. I. Admodisastro, and M. S. Muhammad, “A quality-driven framework for decomposing legacy monolith
applications to microservice architecture,” 2023.

[42] J. Zhao and K. Zhao, “Applying microservice refactoring to object-oriented legacy system,” in Proc. 8th IEEE Int. Conf. Dependable
Systems and Their Applications (DSA), Aug. 2021, pp. 467-473.

[43]S. T. Ali, J. Long, V. K. Khatri, and M. A. Khuhro, “An approach to break down a monolithic app into microservices,” —.
[44] R. X. C. de Jesus, “From monoliths to microservices: automating service boundary detection,” 2021.

[45] F. Freitas, A. Ferreira, and J. Cunha, “A methodology for refactoring ORM-based monolithic web applications into microservices,” J.
Comput. Lang., vol. 75, p. 101205, 2023.

[46] T. C. K. Arachchi, “Process of conversion of monolithic application to microservices-based architecture,” Ph.D. dissertation, 2021.

ISSN: 2455-135X https://www.ijcsejournal.org/ Page 100

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

Appendix A
SL# Monolithic Software Characteristics Monolithic Software Example
1 Modular Architecture. E-commerce applications
Component-Based Design Content management systems
Clear Component Boundaries Customer relationship management (CRM) systems
Component Reusability Enterprise resource planning (ERP) systems
Improved Maintainability Social networking applications
Component Ownership Online gaming applications
2 Event-Driven Architecture E-commerce platforms
Complex Event Processing Customer relationship management (CRM) systems
Audit and Compliance Needs Enterprise resource planning (ERP) systems.
Real-time Data Processing Financial trading systems.
Distributed System Needs
3 Well-Defined Business Domains E-commerce applications
Complex and Diverse Functionality Customer relationship management (CRM) systems
Isolated Business Logic Enterprise resource planning (ERP) systems
Independent Business Processes Banking and financial applications
4 High Complexity Social networking applications
Performance Bottlenecks Online gaming applications
Resource Intensive Banking and financial applications
High Dependency Healthcare applications
Redundancy and Duplication Manufacturing applications
5 Business Domain Complexity E-commerce platforms
Well-Defined Business Capabilities Online banking systems
Independent Business Units Airline reservation systems
Scalability and Performance Isolation Social media platforms
Clear Service Boundaries Content management systems
6 Well-defined domains Large-scale E-commerce Platforms
Modular structure Financial Systems
Clear domain boundaries Enterprise Resource Planning (ERP) Systems
Domain expertise Healthcare Information Systems
Team collaboration Supply Chain Management Systems
7 Well-Defined Functional Modules E-commerce platforms
Separation of Concerns Online banking systems
Third-Party Integrations Content management systems
Integration Points Enterprise resource planning (ERP) systems
Consumed by multiple channels Customer relationship management (CRM) systems
8 High Technical Debt Enterprise Legacy Systems
Outdated Technologies E-commerce Platforms
Complex Legacy Code Content Management Systems (CMS)
High Technical Debt Impact Financial Systems
Lack of Documentation Healthcare Information Systems
Regulatory Compliance Government Software
9 Data-Intensive Applications Real-time analytics systems
Complex Data Models Machine learning systems
High Data Volume Fraud detection systems
Data Integration Financial trading systems
Data Processing Workflows Reservation systems
Isolation of Data Access Order management systems
Data Security and Compliance Logistics and Supply Chain Management Systems
10

Complex Business Workflows
Modular Business Logic

Clearly Defined Business Processes
Highly Interconnected Components
Isolation of Critical Processes

Manufacturing Execution Systems (MES)
Workflow Management Systems

Project Management Software

Supply Chain Management Systems
Customer Service Ticketing Systems

ISSN: 2455-135X

https://www.ijcsejournal.org/ Page

101

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

11 Has well-defined user roles Banking applications
Has complex user interfaces Content management systems (CMS)
Diverse user requirements Customer Relationship Management (CRM)
Evolving user experiences Healthcare Information Systems
Cross-functional teams Human Resources Management Systems (HRMS)
Integration with third-party systems Booking and Reservation Systems
User-driven features E-learning and Education Systems
12 Complex and Tightly Coupled Components Legacy Enterprise Systems
Technology Stack Migration Systems with Multiple Integration Points
Built using different technologies Monolithic Web Applications
Has well-defined technical layers Complex Data Processing Systems
Has complex technical dependencies Systems with Multiple Communication Protocols
13 Complex Interactions and Dependencies Geospatial Information Systems (GIS)
Non-Trivial Functional Separation Location-based Services
Data-Intensive Systems Environmental Monitoring Systems
Need for Data-Driven Decomposition Infrastructure Planning Systems
Gradual Modernization Logistics and Supply Chain Management
14 Diverse Functionality Financial Software
Parallel Development Business Intelligence and Analytics Tools
Selective Modernization Predictive Maintenance Systems
Gradual Transition to Microservices Simulation and Modeling Software
Has well-defined business capabilities E-commerce Platforms with Varied Sales Strategies
15 Applications with Modular Features Legacy systems
Applications with Frequent Updates E-commerce application
Applications with High Availability Banking application
Requirements Healthcare application
Applications with Multiple Technology Stacks | Enterprise Systems
Applications with Diverse User Bases
Well-documented development history
Clear separation of concerns
16 Lack of Clear Modular Structure E-commerce platforms
Keyword-Rich Codebase Content management systems (CMS)
Interconnected Classes Enterprise resource planning (ERP) systems
Limited Prior Documentation Customer relationship management (CRM) systems
Incremental Decomposition Order management systems (OMS)
Complex Business Logic Inventory management systems (IMS)
Well-defined class structure Billing and payment systems
Strong relationships between classes Fraud detection systems
No external dependencies Product recommendation systems
Complex and Large Codebases Content delivery networks (CDNs)
Lack of Clear Separation of Concerns API management systems
Heterogeneous Functionalities Integration platforms as a service (iPaaS)
Poor Code Documentation Business intelligence (BI) systems
Codebase is Not Easily Refactored Machine learning (ML) systems
17 Monoliths with Poor Code Quality Order management systems (OMS)
Systems with Clear Functional Boundaries Inventory management systems (IMS)
Systems with Frequent Updates Billing and payment systems
Interconnected Modules Fraud detection systems
Complex Data Models Product recommendation systems
High Availability and Fault Tolerance Content delivery networks (CDNs)
18 Codebases with Unclear Modularization

Applications with Diverse Functionality
Applications with Multiple Modules
Applications with Limited Documentation
Codebases with High Technical Debt
Applications with Evolving Business

E-commerce platforms

Content management systems (CMS)

Enterprise resource planning (ERP) systems
Customer relationship management (CRM) systems
Order management systems (OMS)

Inventory management systems (IMS)

ISSN: 2455-135X

https://www.ijcsejournal.org/

Page

102

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

Requirements
Systems with Extensive Interdependencies
No external dependencies

Billing and payment systems
Content delivery networks (CDNs)

19 Monolithic Systems with Cross-Cutting Enterprise resource planning (ERP) systems
Concerns Customer relationship management (CRM) systems
Security and Compliance Requirements Content management systems (CMS)
Applications with Frequent Updates E-commerce platforms
Interconnected Modules Real-time systems
Reducing Code Duplication

20 Applications with Diverse User Bases Enterprise resource planning (ERP) systems
Applications with Evolving Business Content delivery networks (CDNs)
Requirements Integration platforms as a service (iPaaS)
Applications with Poor Maintainability Machine learning (ML) systems
Applications with Performance Challenges

21 Applications with Poor Scalability Content management systems (CMS)
Diverse Functionalities Enterprise resource planning (ERP) systems
Complex Business Logic Order management systems (OMS)
Frequent Updates and Changes Inventory management systems (IMS)
Applications with Poor Maintainability Billing and payment systems
Resource-Intensive Operations Fraud detection systems

22 Diverse Functionalities Enterprise resource planning (ERP) systems
Complex Business Logic E-commerce platforms
Frequent Updates and Changes Content management systems (CMS)
Resource-Intensive Operations Social media platforms

23 Multi-Functional Applications Enterprise resource planning (ERP) systems
Resource-Intensive Operations E-commerce platforms
Applications with Poor Modularity Content management systems (CMS)
Custom Business Applications Social media platforms
Safety-Critical Systems Enterprise software
Tightly Coupled Modules Embedded systems

24 Well-defined class structure Web applications
Strong relationships between classes Desktop applications
No external dependencies Microservices
Multi-Functional Applications Large Enterprise Applications
Applications with Scalability Challenges Legacy Systems
Complex Business Logic Custom Business Applications
Applications with Poor Modularity Safety-Critical Systems

25 The large corpus of text Enterprise Resource Planning (ERP) Systems
Well-defined topic structure Content Management Systems (CMS)

No external dependencies E-commerce Platforms

Large codebase Healthcare Information Systems

Well-defined domain Banking and Financial Systems

Heterogeneous functionality Manufacturing and Supply Chain Systems
Incremental refactoring Customer Relationship Management (CRM) Software

26 Complex dependencies Enterprise resource planning (ERP) systems
Well-defined fitness function E-commerce platforms
Limited Technology Stack Content management systems (CMS)
Unclear boundaries Social media platforms
Evolving requirements Legacy Systems
Incremental improvement Scientific and Research Software
Limited documentation Custom Business Applications
Cross-functional teams Financial Systems

27 | Well-defined domain

Complex dependencies
Sequential Execution
Lack of Parallelism

Large and Complex Enterprise Applications
Legacy Systems

Scientific and Research Software

Custom Business Applications

ISSN: 2455-135X

https://www.ijcsejournal.org/

Page 103

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

Access Patterns Content Management Systems (CMS)
Performance Profiling E-commerce Platforms
Compatibility Considerations Financial Systems
28 Large codebase Enterprise Resource Planning (ERP) Systems
Well-defined quality attributes Customer Relationship Management (CRM) Systems
Complex dependencies Healthcare Information Systems
Maintenance Challenges E-commerce Platforms
Technology Stack Heterogeneity Financial Systems
Performance Bottlenecks Manufacturing and Supply Chain Systems
29 Large codebase Enterprise resource planning (ERP) systems
Well-defined domain Content management systems (CMS)
Loosely coupled components Banking and financial systems
Clear boundaries between components Telecom systems
Isolation of Faults Large Enterprise Systems
Rapid Development and Deployment E-commerce Platforms
Resource Efficiency Content Management Systems (CMS)
Service Reusability Manufacturing and Supply Chain Systems
30 Modular Structure Enterprise resource planning (ERP) systems
Clear Functional Boundaries E-commerce platforms
Technological Diversity Content management systems (CMS)
Isolation of Faults Social media platforms
Improved Maintainability Banking and financial systems
Rapid Development and Deployment Healthcare systems
Evolving Requirements Telecom systems
31 Modular Structure Enterprise resource planning (ERP) systems
Clear Functional Boundaries E-commerce platforms
Business Logic Separation Content management systems (CMS)
Limited Cross-Cutting Concerns Social media platforms
Well-Defined Interfaces Banking and financial systems
Maintainability Challenges Healthcare systems
Technological Diversity Telecom systems
32 Complexity and Size Content management system (CMS)
Separation of Concerns Enterprise resource planning (ERP)
Modularization Potential Customer relationship management (CRM)
Limited Cross-Cutting Concerns Social media platform
Outdated Technology Stack E-learning platform
33 Modular Monoliths Enterprise resource planning (ERP) systems
Layered Architectures E-commerce platforms
Service-Oriented Monoliths Content management systems (CMS)
Separation of Concerns Social media platforms
Microservices-Ready Monoliths Banking and financial systems
Large and Complex Monoliths Telecom systems
Appendix B
SI# Steps Applied in Decomposition Type Time Required Cost Required
1 1. Recognize the fundamental components. | From Days to Employee remuneration
Month
2. Streamline and improve the components. | From Week to Cost related to Refactoring and
Months regression testing.
3. Determine the dependencies between From Days to Week | Employee remuneration
components.
4. Categorize components into groups. From Days to Week | categorization effort and expertise cost

ISSN: 2455-135X

https://www.ijcsejournal.org/ Page 104

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

1. Gather event logs.

From a few days to
several weeks

Cost of log collection and log storage
and cost of used tools

2. Extract insights from the event logs.

From week to
months

Cost of log mining, analysis tools, or
software.

3. Determine microservices.

From Several weeks
to months

Cost of software architect,
documentation effort, and tool and
technology

1. Recognize the key business functions.

From a few weeks
to a couple of
months

Cost related to remuneration of
analysts, domain experts, and
stakeholders

2. Break down these business functions into
microservices.

From several
months to a year

Cost related to development resources,
new technology adoption, and
infrastructure changes

3. Pinpoint the interrelationships among
microservices.

From a few months
to a year or more

Cost related to analysis, design, and
development of APIs

1. Static examination

From a few days to
months

Cost related to Tools and expertise

2. Dynamic assessment

From week to
several months

Cost related to hardware, software
setting up test environments, automated
testing tools, and personnel to design,
execute, and analyze the tests.

3. Manual improvement

From months to

the salaries and benefits of the

year development team
1. Discover business capabilities. 2-4 weeks the salaries and benefits of the
development team
2. Break down business capabilities into 4-8 weeks the salaries and benefits of the
microservices. development team
3. Recognize interdependencies among 4-8 weeks the salaries and benefits of the
microservices. development team
1. Bounded contexts with ubiquitous Several weeks to the salaries and benefits of the
language. several months development team and the cost of

external resource

2. Identify and define Domains

Several weeks to
several months

the salaries and benefits of the
development team and the price of
tools

3. Aggregates, entities, and value objects

several months

the salaries and benefits of the
development team and the price of
tools

1. Identify the logical components of the
monolithic system.

several weeks to a
few months

salaries of the team and external
consultant

2. Flatten or refactor the components into
smaller, more manageable units.

several months

salaries and cost of tools or
technologies

3. Identify the dependencies between the
components.

several weeks to a
few months

the salaries and benefits of developers

4. Group the components into
microservices.

several weeks to a
few months

developer salaries and cost of resources
or tools

1. Assessment and Planning

several weeks to a
few

salaries of the team and cost tools or
resources

2. Define Microservice Boundaries

few weeks to a
couple of months

salaries of the expertise team

3. Prioritize Technical Debt

several weeks

Salaries of team and cost of
specialized tools for code analysis

ISSN: 2455-135X

https://www.ijcsejournal.org/

Page 105

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

4. Refactoring and Code Improvement

several months to
years

salaries of the development team and
cost tooling or resources

9 1. Identify Core Data Entities several weeks Salary and benefits of domain experts
and developers

2. Map Data Relationships a few weeks to a Salary and benefits of domain experts
couple of months and developers

3. Define Data Boundaries several weeks Cost-related remuneration of developer
and architect hours needed.

4. Identify Data Access Patterns a few weeks Salary of developer and architect hours,
as well as cost of monitoring and
profiling tools

5. Group Functionality with Data Entities a few weeks Cost related to Developer and architect
hours

6. Prioritize and Plan Decomposition a few weeks to a Cost of project management and

couple of months development hours.

7. Extract Microservices several months to Cost related to developer and QA

over a year resources, infrastructure, and new
technologies or tools
10 | 1. Map Business Processes to Components | several weeks Cost related to business analysts and
developers

2. Determine Dependencies a few weeks to a Cost related to developer and architect

couple of months hours and costs for tools.

3. Define Microservices Boundaries take several weeks Cost of architect and developer hours

4. Identify Data Requirements a few weeks Cost related to data architects and
developers

11 | 1. Identify User Personas and Use Cases a few months Cost related to research, user
interviews, and documentation

2. Create a User Flow Diagram a few weeks to a Remuneration of expertise of UX

couple of months designers and diagramming tools

3. Identify User-Centric Boundaries a few weeks to a Cost involvement of analysis and

few months documentation

4. Define Microservice Boundaries several months toa | Cost of architectural planning,

year discussions, and potentially hiring
experienced architects

5. Data Modeling and Database Splitting several months Cost related to database expertise,
migration tools, and testing resources

1. Identify Technology Dependencies several weeks to a Costs involve analysis and

few months documentation resources
2. Define Technology-Oriented Boundaries | several weeks to a Cost related to architecture planning,
few months discussions, and possibly hiring
experienced architects

3. Select Appropriate Microservice several weeks to a Cost of research, training, and potential

Technologies few months licensing fees for new technologies

4. Data and Database Consideration several months toa | Cost related to database experts,

year migration tools, and potential data
synchronization mechanisms

5. Refactor and Isolate Components several months toa | Cost of resources, testing, and rewriting

year or more or adapting code to fit the new
microservices architecture
13 | 1. Data Analysis and Preparation several weeks to a Cost related to resources for system

few months

analysis, documentation, and hiring
experts

2. Feature Extraction

several weeks

Remuneration of engineering resources
and data scientists

ISSN: 2455-135X

https://www.ijcsejournal.org/

Page 106

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9

Issue 5, September - October - 2025

3. Hierarchical DBSCAN Clustering

several weeks to a
few months

Remuneration of data science and
machine learning expertise, as well as
the cost of software or libraries for
clustering

4. Determining Clustering Parameters

a few weeks

Remuneration of data scientists or
machine learning experts

5. Identify Microservice Boundaries

several weeks to a

Cost of architectural planning and

few months discussions
14 | 1. Data collection several weeks to a Cost related to resources for data
few months collection, documentation, and hiring
experts
2. Strategy selection few weeks to a Cost related to resources for strategy
couple of months evaluation, discussions, and potentially
consulting with experts
3. Microservices identification several months Costs involve resources with expertise
in software architecture
4. Evaluation a few weeks to Cost related to architectural evaluation,
several months testing, and potentially prototyping
15 | 1. Collect the development history several weeks or Remuneration of developers and
even months possibly data analysis experts.
2. Identify the microservices several weeks to cost will depend on the expertise of the
months team and the size of the codebase
3. Evaluate the microservices several weeks to Cost related to the analysis and
months decision-making process
4. Redesign the microservices several months Cost of the redesign
5. Migrate the code several months to Remuneration of developers and tools
years or automation is used.
16 | 1.Identify the classes several weeks to Cost related to developers and
months architects and tools for code analysis
2. Extract the keywords several weeks Cost related to developer data analysts
and automated tools
3. Cluster the classes several weeks Cost related to architect and developer
and tools for code analysis.
4. Identify the microservices several weeks to Remuneration of expertise team.
months
5. Redesign the microservices several weeks to Remuneration and benefits of
months developers and architect.
6. Migrate the code several months to Remuneration and benefits of
years developers who are responsible for
rewriting and retesting code. Also, the
cost of migration tools or frameworks
are used.
17 | 1. Structural refactoring several months to Remuneration of developers and

over a year

architects as well as the cost of any
tools or technologies required

2. Behavioral refactoring

several months

Remuneration of developers, architects,
and potentially domain experts. It may
also involve testing and validation
COsts.

3.Data refactoring

several months to
complete.

Remuneration and benefit of data
engineers or database administrators
and transformation. As well as the cost
of tools or technologies used for data
management.

ISSN: 2455-135X

https://www.ijcsejournal.org/

Page 107

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

18 | 1. Distributed Representation of Source
Code

several weeks to
months

Cost related to data scientists or
machine learning engineers as well as
the cost of any tools or computational
resources used.

2. Clustering

several weeks to
months

Cost related to data scientists,
developers, or architects and the cost of
tools or libraries used for clustering

3. Evaluation

several weeks to
months

Benefits of architects, developers, or
domain experts

19 | 1. Identify the concerns in the monolithic
application

several weeks to
months

Remuneration of developers, architects,
and domain experts and cost involve
tools or code analysis software

2. Create the microservices

several months to
over a year

salaries of developers and the cost of
tools, or technologies required for the
microservices.

20 | 1. Analyze the monolithic application

several weeks to
months

Benefits of expertise of software
architects and developers and cost of
tools or software

2. Define a quality function

a few weeks to a
month

Benefits of expertise of architects

3. Identify the microservices

several months to a
year or more

Benefits of expertise of software
architects and developers and cost of
testing and validation

21 | 1. Select the decomposition technique

weeks to a couple of
months

Compensation of experts or consultants

2. Configure the Mono2Micro tool

a few weeks to a
couple of months

licensing or subscription fees for the
Mono2Micro tool, as well as the time
and expertise required to configure and
customize the tool for your specific
application

3. Evaluate the microservices

several months

Remuneration of expertise of software
architects and developers. It may also
include testing and validation costs

22 | 1. Granularity checking

several weeks to a
few months

compensation of experts or consultants

2. Coupling checking

several weeks to
months

cost includes the time and expertise of
software architects and developers

3. Messaging checking

several weeks to
months

time and expertise required to
implement messaging patterns and
potentially the cost of any messaging
infrastructure or tools

4. Security Checking

several weeks to
months

Remuneration and benefit of
development and security teams

23 | 1. Problem Identification

several weeks to
months

compensation of experts or consultants
and involve the cost of tools or
software

2. Problem Decomposition

several months to a
year or more

Remuneration of expertise of software
architects and developers

3. Microservice Identification

several months

Remuneration of expertise of software
architects and developers

24 | 1. Identifying dependencies

several weeks to a
few months

compensation of experts or consultants
and the cost of tools or software for
code analysis.

2. Clustering components

several months to a
year

Remuneration and benefits of the
expertise of software architects and

ISSN: 2455-135X

https://www.ijcsejournal.org/

Page 108

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

developers.

3. Identifying microservices

several months

Benefits of expertise of software
architects and developers and cost of
tools or software

25 | 1. Extracting features several weeks to Benefits of the number of resources and
several months cost of tools and software
2. Building a topic model take several weeks The benefits of the expertise of the data
scientists or analysts and the tools or
software cost
3. Identifying microservices several weeks to The salary of the architects and
several months developers
26 | 1. Initialize the population few weeks The salary of architects, developers,
and data scientists and the cost of
specialized software or tools
2. Evaluate the solutions weeks to months Salary of expertise required to assess
each solution's suitability
3. Select the parents a few days or less. Minimal cost is associated with
selecting parents, as it's a
straightforward algorithmic process
4. Crossover a few weeks cost includes development time to
implement crossover operations and
potential computational resources for
simulation or testing
5. Mutation a few days cost includes development time to
analyze mutation operations and
potential computational resources for
simulation or testing
6. Repeat steps 2-5 As 2-5 As 2-5
27 | 1. Vectorize the code several weeks to Benefit of expertise required for code
several months analysis and vectorization and cost of
tools or software used for code analysis
2. Identify microservices weeks to months Benefits of architects and developers
cost of specialized software or tools for
clustering and analysis.
3. Consider the sequence of accesses weeks to several Benefits of expertise and the cost of
months monitoring tools or logging
infrastructure to gather data on runtime
interactions.
28 | 1. Analyze the legacy application several weeks to Benefits of software architects,
several months developers, and analysts who assess the
legacy application and cost of tools or
software for code analysis and
documentation.
2. Identify quality attributes several weeks Benefits of Expertise.
3. Decompose the application several weeks to Salary of software architects and
several months developers
29 | 1. Identify candidate microservices several weeks to Benefits of software architects and

several months

developers

2. Refactor the classes

several months or
more

Benefits of software developers

3. Design the microservices

several weeks to
several months

Benefits of software architects and
developers and cost of tools or

ISSN: 2455-135X

https://www.ijcsejournal.org/

Page 109

https://www.ijcsejournal.org/

International Journal of Computer Science Engineering Techniques — Volume 9
Issue 5, September - October - 2025

frameworks for designing

microservices
30 | 1. Analyze the monolithic application several weeks to salaries of the engineers and architects
months
2. Identify microservice candidates several weeks to salaries of engineers, architects, and
months possibly domain experts and cost of
tools or software for code analysis
3. Evaluate the microservice candidates several weeks to salaries of engineers and architects
months involved in the evaluation process
31 | 1. Model the application as a graph several weeks to salaries of software architects and
months engineers, and cost-specialized
modeling tools or software
2. Identify microservice candidates several weeks to salaries of software architects,
months engineers, and domain experts
3. Optimize the decomposition several weeks to salaries of software architects and
months engineers
32 | 1. Identify ORM entities several weeks to salaries of developers and database
months experts, and the cost of database
analysis tools
2. Group ORM entities several weeks to salaries of developers, architects, and
months domain experts
3. Refactor the application several months to salaries of developers, architects,
years testers, and project managers
33 | 1.Identification of microservice candidates | weeks to a few salaries of software architects,

months

developers, and domain experts, and
the cost of tools for code analysis and
documentation

. Design of the microservice architecture

several weeks to
several months

salaries of software architects,
designers, and developers

. Development of the microservices

several months to a

year or more

salaries of developers, testers, and
project managers

ISSN: 2455-135X

https://www.ijcsejournal.org/

Page 110

https://www.ijcsejournal.org/

