
 International Journal of Computer science engineering Techniques – Volume 3 Issue 2, May-June 2018

ISSN: 2455-135X http://www.ijcsejournal.org Page 10

Measuring Non-Functional Requirement via Cloud Hosted

Application in Favour of Booking System

Anamika Sharma,Brijesh Pandey

(Department of Computer Science,Goel Institute of Technology & Management,Lucknow)

I. INTRODUCTION

When we build software, we have to gather all
the requirements regarding that software. The
initial phase of the software development life
cycle is requirement gathering [1]. Both end user
and developer are affected by these requirements.
Whole requirement body is categorized into
functional and non-functional requirements[2]. In
which functional requirements are primarily
revealed because it affects the life cycle of
development directly.Software development
totally based on functional requirements, but
NFRs are included in those that supply the norms
while implementing the code[3]. At the designing
process, many authors have concerns about the
NFRs and the problems of their inclusion[4].
Pavlovski and Zou [R1] describe NFRs as
particular performance and operational constraints,
such as work expectations and policy
constraints[5]. While the reality is that, NFR’s are
described in many ways. We learned, talked, and
even faced these NFR’s but just because NFR’s
does not affect the software

directly so these are not considered acutely as

they should be. Glinz [6] gives the advice that we
have to make two separate parts of functional and
NFRs and grouped them into two different sets so
both requirements can inherently considered while
developing the applications. Alexander [7] said
that when we focuses on the language which used
to describe the requirements, we find a particular
word as postfix that is ‘-ility’[8]. Examples of
these words are portability and maintainability.
His work is totally oriented on the recognition of
NFR’s[9]. Our work establish on theirs by
applying domain specific models using flexibility
mechanisms construct into standard
modelingnotations[10].

II. NEED OF THE STUDY

Ranabahu and Sheth discus that, when we
represent cloud application requirements there are
four different modelling semantics necessary
which include data, functional, non-functional and

Abstract:
Functional requirements are elaborated and mapped in many ways. Software development totally based on
functional requirements, but NFRs are included in those ones that supply the norms while implementing
the code. At the designing process, often we have forgotten the inclusion of the NFRs sometimes it
becomes expensive to handle it. Now in the era of cloud technology, it becomes very important since
response latency and concurrent load becomes more unsafe by public networks because now it is not
enough to develop a cloud system with only functional requirement they need to include NFRs as integral
parts. Here in our work we have concentrated on modelling of NFRs and a covert from UML model to
source code. In our work we have chosen three parameter request response time, concurrency and pick
seat time.

Keywords—UML, NFRs, Latency, HTML5

RESEARCH ARTICLE OPEN ACCESS

 International Journal of Computer science engineering Techniques – Volume 3 Issue 2, May-June 2018

ISSN: 2455-135X http://www.ijcsejournal.org Page 11

system[11]. Their efforts oriented on functional
and system requirements. There are some similar
aspects in Ranabahu and Sheth and my work[12],
but that is only in NFRs from the system point of
view[13]. They build on the work done by Stuart
in his workshops. There are three phases of the
cloud application life cycle, in that Stuart defined
well-formed modeling languages to model the
cloud computing requirements. Those three phases
of cycle are development, deployment, and
management. Our work used to add those
semantic categories of NFRs which are
missing[14].

III. RESEARCH PROPOSAL

All paragraphs must be indented. All

paragraphs must be justified, i.e. both left-justified
and right-justified.For the study of all this, we
consider mainly three NFRs that is response time,
concurrency and pick seat time to implement our
system “ticket booking system”. We model in
UML and OCL deploying stereotypes to apply the
additional required semantics for each NFR. To
implement the NFRs, we focus on generation of
codes of the model. We generate these codes for
the NFRs which are used in cloud application.
Then all applications use the thread on the server
side for every user.

A. Request response time

In an online system, every one (client) interact
with any application (on the server) by just
making the request about that application in Cloud
system. That request response time differentiates
any application with other application and
minimum request time is the main aspect by
which every user selects its application. This time
is one of the top most performance measures in
our ticket booking system. We take this NFR and
depict it as a ‘Response time’ stereotype in our
UML activity diagram (Figure). This stereotype
directly connects every relation between client and
server. Generally, response time can be classified
as the elapsed time between the requests has
placed and the first response made. In an activity
diagram, a control flow can be set the stereotype.
We use control flow in the algorithm for applying

this stereotype. In an initial step, we measure the
time before the request is sent to the server. When
a response is received, then the difference between
times is checked. The response time is described
by the difference of send and received time. The
different latency requirements are depicted by the
specific stereotypes. For example “low latency”
and “high latency”. The permitting time for every
stereotype can be defined through runtime
configuration. For calculating the average
response time for the whole system, we measure
response time for every request generated by users
is measured. By this approach, we measure an
appropriate all over system performance. After
that we can make the comparison of it over time.
If there is a pattern of increased average response
time, we can again notify the average response
time of every module/ type of request and then
find the bottlenecks. For ensuring this NFR, we
use the implementation of Algorithm 1. In the
algorithm, there is a rollback situation of any half
work done. The client gives the notification to the
server when the timeout occurs. The algorithm
enables the server to rollback. In the algorithm,
the client informs the server to enabling to
rollback for any incomplete work, if there is a
timeout condition occurs.

B. Concurrency

Concurrency is a robustness computation of any
application, mainly for any online ticket booking
system. This threshold concurrency is represented
as ‘Simultaneous Users’ stereotype in the UML
activity diagram (Figure). We make a pool of
threads of size on stereotype. We execute this
phenomenon by swapping the threads. All these
requests are handled by the server by just making
them in a queue. For processing every request,
each instance of the request is pulled from the
queue and is assigned to a thread from the pool.
For execution of this stereotype that is measuring
the concurrency, we judge and notify the latency
of the request. We note particular timing at which
the request is sent to the server and also measure
that when the response is received from the server.
We take latency for the request as the time
difference between when the request is sent and
server replied to that. This latency of each request

 International Journal of Computer science engineering Techniques

ISSN: 2455-135X

is noted and the queue time is adjoined to the
record. For measuring the system performance
totally, we use that measured record of latency.
These records are used for comparison
If the average latency time increases, we can again
take the average latency of each module/type of
requests and find the bottlenecks. When
measuring the concurrency stereotype, the
bottleneck is frequently caused by a pool of
threads. That bottleneck is smaller than the
demand on the server. To guarantee this NFR, we
use the implementation of Algorithm 2.

C. Pick seat time

There is also a situation in which a user does not
give any response to a running form in a definite
time period. This is the major and essential NFR
for many systems. In the online ticket booking
system, the user goes through the system, then,
select or pick the seat. When the user selects the
seat, the resources are locked from other current
user. The time duration of the locks are held needs
to be minimized. The form response time
requirements are represented in the standardized
form in our UML activity diagram as ‘Limited
user time’. In the ticketing application system, the
stereotype which is particular to the booking sea
activity. The definite time is allotted to the user
for picking its seat for response. For implementing
this idea, we hold together, an event and request
submission of the client. For measuring the time
factor used by the user in the ticket booking
system, the client application polls are used. This
application poll continuously to checks that if the
request is sent within the specified time. If a user
makes late and take more time than the time
specified by the stereotype, then the user receives
a message in which by default all locks have been
released. There is another situation in which the
user’s request is sent before the specified time,
and then the user will continue their task and
proceed to the next activity. To guarantee this
NFR, we use the implementation of Algorithm 3

International Journal of Computer science engineering Techniques – Volume 3 Issue 2, May

 http://www.ijcsejournal.org

is noted and the queue time is adjoined to the
record. For measuring the system performance
totally, we use that measured record of latency.
These records are used for comparison over time.
If the average latency time increases, we can again
take the average latency of each module/type of
requests and find the bottlenecks. When
measuring the concurrency stereotype, the
bottleneck is frequently caused by a pool of

tleneck is smaller than the
demand on the server. To guarantee this NFR, we
use the implementation of Algorithm 2.

There is also a situation in which a user does not
give any response to a running form in a definite

the major and essential NFR
for many systems. In the online ticket booking
system, the user goes through the system, then,
select or pick the seat. When the user selects the
seat, the resources are locked from other current

ocks are held needs
to be minimized. The form response time
requirements are represented in the standardized
form in our UML activity diagram as ‘Limited
user time’. In the ticketing application system, the
stereotype which is particular to the booking seats
activity. The definite time is allotted to the user
for picking its seat for response. For implementing
this idea, we hold together, an event and request
submission of the client. For measuring the time
factor used by the user in the ticket booking

em, the client application polls are used. This
application poll continuously to checks that if the
request is sent within the specified time. If a user
makes late and take more time than the time
specified by the stereotype, then the user receives

ge in which by default all locks have been
released. There is another situation in which the
user’s request is sent before the specified time,
and then the user will continue their task and
proceed to the next activity. To guarantee this

plementation of Algorithm 3

Figure.1 Activity Diagram

D. ALGORITHMS:

Algorithm 1. Request Response Timeout

INPUT:HTML5 of request to Server,
completion_ time

OUTPUT: HTML5 of response with server
Send request to server Set timer to hit every

second Set holdTimeLimit = 0 Do
Check if response is received

While holdTimeLimit<compeletion_time or

response received
If response not received
Set response as “Expired Time” error

Set response to timeout error
Examine server of compeletion_time

End if

Return response

Algorithm 2. Concurrency

INPUT: HTML5 of request,
compeletion_timeOUTPUT: HTML5 of data
entered or HTML5 with error
Check if any threads in pool

If no threads in pool Set timer to hit every

second Set holdTimeLimit = 0 Do

Check if thread available in the pool

While holdTimeLimit<compeletion_time or

thread received

If not thread received
Set response to timeout error
ELSE

Execute request in thread

End if

Return response

Volume 3 Issue 2, May-June 2018

Page 12

.1 Activity Diagram

Algorithm 1. Request Response Timeout

HTML5 of request to Server,

HTML5 of response with server
Send request to server Set timer to hit every

second Set holdTimeLimit = 0 Do

While holdTimeLimit<compeletion_time or

Set response as “Expired Time” error

Examine server of compeletion_time

HTML5 of data

Check if any threads in pool

If no threads in pool Set timer to hit every

second Set holdTimeLimit = 0 Do

eck if thread available in the pool

While holdTimeLimit<compeletion_time or

 International Journal of Computer science engineering Techniques

ISSN: 2455-135X

Algorithm 3. User Response Timeout
INPUT:HTML5 of form to
display,compeletion_time
OUTPUT: HTML5 of data entered or HTMl5
with error
Display form to user Set timer to hit every

second

Set compeletion_time = 0 Do
Check if response is received
While holdTimeLimit<compeletion_time or

response received

If response not received
Notify user of time expiration
Set response to timeout error
End if

Return response

NON-FUNCTIONAL REQUIREMENTS THAT

AFFECT THE USER’S SELECTION TOWARDS THE

CLOUD SERVICE PROVIDER:-

In today’s scenario, there are ma
cloud providers in the market. But we also make
our selection on the basis of NFRs which directly
affects the user. This is discussed before, in the
start of this paper. Here we make a chart of
leading applications which shows the situation of
market of cloud providers.

Security Feature:-Amazon Web Service uses
several Operational Security features like
Vulnerability management, Malware prevention,
Monitoring, Incident management, Server and
Software Stack Security, Trusted Server Boot,
Secured Service APIs and Authenticated Access,
Data Encryption, Network Firewall Rule
Maintenance.

Here are the cloud leaders we will profile:
 Amazon Web Services
 Microsoft Azure
 IBM Cloud
 Google Cloud Platform

International Journal of Computer science engineering Techniques – Volume 3 Issue 2, May

 http://www.ijcsejournal.org

HTML5 of data entered or HTMl5

Display form to user Set timer to hit every

While holdTimeLimit<compeletion_time or

FUNCTIONAL REQUIREMENTS THAT

AFFECT THE USER’S SELECTION TOWARDS THE

In today’s scenario, there are many service
cloud providers in the market. But we also make
our selection on the basis of NFRs which directly
affects the user. This is discussed before, in the
start of this paper. Here we make a chart of
leading applications which shows the situation of

Amazon Web Service uses
several Operational Security features like
Vulnerability management, Malware prevention,
Monitoring, Incident management, Server and
Software Stack Security, Trusted Server Boot,

ted Access,
Data Encryption, Network Firewall Rule

Here are the cloud leaders we will profile:

Figure 2:
5.5. PUBLIC CLOUD PROVIDERS

COMPARISON CHART

When we look at the comparison of the
dominant and leading public cloud providers we
have to be very careful: few of the services truly
line up in an “apples-to-apples” similar style.
There are several cloud providers which provide
their services to us but we choose our provider on
the basis of some important features. The chart
below should help us to get started.

Require

ments

Google

cloud

Amazon

 Web

Service

Comput

e

Bare

Metal

Servers

Virtual

Servers

Power8

EC2

Storage Object

Storage

Block

Storage

File

Storage

Mass

Storage

Servers

S3

EBS

EFS

Glacier

Databas

e and

Data

warehou

se

Data

Services

Big Data

Hosting

MongoD

B

Hosting

Aurora

RDS

DynamoD

B

Redshift

Contain

er

Containe

rs

Container

Registry

Container

Service

Volume 3 Issue 2, May-June 2018

Page 13

Figure 2:
PUBLIC CLOUD PROVIDERS

e look at the comparison of the
dominant and leading public cloud providers we
have to be very careful: few of the services truly

apples” similar style.
There are several cloud providers which provide

oose our provider on
the basis of some important features. The chart
below should help us to get started.

IBM Microso

ft Azure

Compute

Engine

App

Engine

Virtual

Machine

s

Cloud

Storage

Persisten

t Disk

Blob

Storage

Queue

Storage

File

Storage

Disk

Storage

Cloud

SQL

Cloud

Bigtable

Cloud

Spanner

Cloud

Datastor

e

Data

Lake

storage

SQL

Database

Docume

nt DB

Table

Storage

SQL

Data

Warehou

se

Containe

r Engine

Containe

r

Registry

Containe

Containe

r

Registry

Containe

r Service

 International Journal of Computer science engineering Techniques – Volume 3 Issue 2, May-June 2018

ISSN: 2455-135X http://www.ijcsejournal.org Page 14

r Builder

Serverle

ss/Faas

OpenWh

isk

Lambda Cloud

Function

Function

s

Analysis Analytic

s Service

Cloudera

Hosting

Athena

EMR

Kinesis

BigQuer

y

Cloud

Dataflow

Cloud

Dataproc

Cloud

Datalaba

HDInsig

ht

Stream

Analysis

Artificia

l

Intellige

nce

Watson Lex

Polly

Recogniti

on

Machine

Learning

Cloud

machine

Learning

Engine

Cloud

Natural

Languag

e API

Cloud

Speech

API

Cloud

Transacti

onAPI

Cloud

Vision

API

Machine

Learning

Cognitiv

e

Services

Bot

Services

Data

Lake

Analytic

s

Internet

Of

Things

Internet

of

Things

IOT

Platform

Greengras

s

 IOT Hub

Event

Hub

Backup

and

Disaster

Recover

y

Backup

 Backup

Site

Recover

y

In-

Memory

Technol

ogy

 Elastic

Cache

 Redis

Cache

5.5. BASIC NON-FUNCTIONAL

REQUIREMENTS COMPARISON OF

LEADING CLOUD PROVIDERS
When we look at public cloud providers which

provide basically the internet, there are a great
number of options in the market to select our
appropriate service. As an example, more than

95public clouds are registered with the monitoring
service [R12].Now days, every public cloud
provider has several proposals of heterogeneous
services for their clients. We cannot directly
compare these services with other cloud
provider’s services because of diversity in services.
Just because our work is focuses on Non-
Functional Requirements we choose some leading
cloud providers here, which are in the market and
provides us their utilities:

Non

Functiona

l

Requirem

ent

Google

Cloud

Platfor

m

Amazon

Web

Service

IBM Microsoft

Azure

Securit

y

features

App

Engin

e only

Amazon

Inspecto

r,

Secured

Socket

Layer(S

SL)

Certifica

tes

Secured

Socket

Layer(SS

L)

Certificat

es

Azure

Security

Center,

Secured

Socket

Layer(SSL)

Certificates

Web

Firewal

l

 AWS

Web

Applicat

ion

Firewall

Hardwar

e

Firewall

Azure

Application

Gateway

i)

Prevent

ive

measur

es

Moder

ate

Moderat

e

Basic Basic

ii)

Reactiv

e

measur

es

Moder

ate

Moderat

e

Basic Basic

 International Journal of Computer science engineering Techniques – Volume 3 Issue 2, May-June 2018

ISSN: 2455-135X http://www.ijcsejournal.org Page 15

Reliabil

ity

Good Good Good Average

Scalabi

lity

Good Good Good Good

Support Good

and

chargeab

le

 Good

Compli

ance

 AWS

Artifact

 Azure

Security &

Complianc

e

Availab

ility

(%)

99.95 99.95 99.95 99.95

Server

Perfor

mance

(Over a

period)

Excell

ent

Good Good Excellent

and

consistent

Tools/

framew

ork

Pytho

n 2.7,

Java

7,

PHP,

Node.j

s, and

Ruby

Amazon

machine

image

(AMI),

Java, P

HP, Pyt

hon,

Ruby

Ruby,

PHP,

JAVA,

Python,

Node.js,

ASP.Net,

PHP,

ASP.NET,

Node.js,

Python

Databa

se RDS

MySQ

L(Clo

ud

Sql),

Big

Query

MySQL,

MsSQL,

Oracle

 Microsoft

SQL

Database

Data

Wareho

using

Big

Query

Amazon

Redshift

dashDB

for

Analytic

s

Azure SQL

Data

warehouse

Pricing $0.15

per

cluster

per

hour,

Nearli

ne

storag

e

$0.01/

GB/M

onth,

$0.05/

GB/M

onth

Instance

s range

from

$0.113/h

our to

$6.82/ho

ur, with

volume

discount

s

available

for

reserved

instance

s.

Storage

prices

range

from

$0.095/

GB/mon

th to

$0.125/

GB/mon

th.

Storage

$0.0295

-

$0.0354/

GB/Mon

th

Instances

range from

$0.02 to

$1.60 per

hour.

Storage

prices

range from

$0.07/GB/

month to

$0.12/GB/

month,

depending

on level of

redundancy

.

Sample

Averag

e

Pricing

(4GB

RAM,

CPU 2

Core,1

00GB

69$

per

month

62$ per

month

115$ per

month

99$ per

month

 International Journal of Computer science engineering Techniques – Volume 3 Issue 2, May-June 2018

ISSN: 2455-135X http://www.ijcsejournal.org Page 16

HD,

Bandwi

dth

100GB,

Linux)

Trial

Offerin

g

30-

day

trial

New

users

can get

750

hours,

30GB

storage

and

15GB

bandwid

th for

free with

AWS’s

Free

Usage

Tier.

30-day

trial,

2 GB of

runtime

and

container

memory

for free

Free 30-

day trial

with a limit

of up to

$200 is

available

for new

users.

Limitat

ions

A

global

fiber

netwo

rk,

Analy

tics

that

crunc

h

petaby

tes in

minut

es.

AWS is

a

complex

mixture

of

services.

As your

workflo

ws

become

more

complex

and you

use

more

services

it can be

difficult

to

project

expenses

.

Howeve

r,

IBM

improves

a

collabora

tion of

essential

data.

Minimal,

easy-to-use

portal

interface

may not be

so

appealing

to

command

line gurus.

Amazon

offers a

monthly

calculato

r to help

estimate

your

costs.

Data

Centers

Locatio

n

Ameri

ca,

Asia,

Europ

e

US East,

US

West,

South

America

,

Europe/

Middle

East/Afr

ica &

Asia

Pacific

USA,

Netherla

nd,

INDIA,

China,

Germany

,

Australia

, Canada

US East,

US Central

, US West,

Europe,

East Asia,

Southeast

Asia

CDN

Locatio

ns

(Edge)

North

Ameri

ca,

South

Ameri

ca,

Europ

e,

Asia

North

America

, South

America

,Europe/

Middle

East/Afr

ica &

Asia

Pacific

Europe,

Middle

East and

Africa,

Japan,

North

America,

Asia-

Pacific

US East,

US North,

US Central,

US South

central ,

US West,

Europe,

Asia

Pacific /

Rest of

World

Accept

ance

By

User(R

ating)

4.5 ,

177

revie

ws

4.4, 187

reviews

4.4, 49

reviews

4.4, 183

reviews

IV. CONCLUSIONS

In this work, we show that we can map NFR’s
to many cloud based applications using UML
stereotypes. As we know that UML is the
modeling diagram in which we show the process
in an incremental and interactive way. We expand
the NFR’s to design the model for Cloud based

 International Journal of Computer science engineering Techniques – Volume 3 Issue 2, May-June 2018

ISSN: 2455-135X http://www.ijcsejournal.org Page 17

application rather than functional requirements.
We model in UML and OCL deploying
stereotypes to apply the additional required
semantics for each NFR. We focus on basic three
NFR’s by which we gather the information about
our end user’s transaction and response. Future
work will enhance my work to include these
NFR’s for modeling and converting the codes of
NFR’s into cloud application tools and also
enhances the type of NFR’s for other upcoming
methodologies. By this, we can develop the
quality of these methodologies. Our work
enhances the performance and characteristics of
applications. This will also reduce the error rate.

REFERENCES

[1] C. J. Pavlovski and J. Zou, "Non-functional
requirements in business process modeling,"
Proceedings of the Fifth on Asia-Pacific
Conference on Conceptual Modelling, vol. 79,
2008.

[2] M. Glinz, "Rethinking the Notion of Non-
Functional Requirements," Third World
Congress for Software Quality, Munich,
Germany, 2005

[3] Alexander, I, "Misuse Cases Help to Elicit
Non-Functional Requirements," Computing
& Control Engineering Journal, 14, 40-45,
2003.

[4] A Saxena, S Sharma,PAgarwal, C Patel
“SSTL Based Energy Efficient FIFO
Designfor High Performance Processor of
Portable Devices ” in International Journal of
Engineering and Technology (IJET)Vol 9 No
2 Apr-May 2017DOI:
10.21817/ijet/2017/v9i2/170902113.

[5] R. Ajith and A. Sheth, "Semantic Modeling
for Cloud Computing, Part I," Computing, vol.
May/June, pp. 81-83, 2010.

[6] https://www.cloudorado.com/cloud_providers
_comparison.jsp

[7] A Saxena,CPatel,M.Khan “Energy Efficient
ALU Design Based On Voltage Scaling” in
Gyancity Journal of Electronics and
Computer Science,Vol.1, No.1, pp.29-33,
September 2016ISSN: 2446–2918 DOI:
10.21058/gjecs.2016.11006.

[8] John, S. & Laurie, W. (2013). Automated
Extraction of Non-functional Requirements in
Available Documentation, IEEE.

[9] Asghar, S., & Umar, M. (2010). Requirement
engineering challenges in development of
software applications and selection of
customer-off-the-shelf (COTS) components.
International Journal of Software Engineering,
1(1), 32-50.

[10] Pandey, D., Suman, U., &Ramani, A. K.
(2010, October). An effective requirement
engineering process model for software
development and requirements management.
In Advances in Recent Technologies in
Communication and Computing (ARTCom),
2010 International Conference on (pp. 287-
291). IEEE.

[11] Selvakumar, J., &Rajaram, M. (2011).
Performance Evaluation of Requirements
Engineering Methodology for Automated
Detection of Non Functional Requirements.
International Journal

[12] Dwork, C., Rothblum, G. N., &Vadhan, S.
(2010, October). Boosting and differential
privacy. In Foundations of Computer Science
(FOCS), 2010 51st Annual IEEE Symposium
on (pp. 51-60). IEEE.

[13] ASaxena, S Gaidhani, A Pant, C
Patel “Capacitance Scaling Based Low
Power Comparator Design on 28nm FPGA”
in International Journal of Computer Trends
and Technology (IJCTT) – Volume X Issue
Y- Month 2015.

[14] ASaxena,CPatel, P Verma, PGautam “Cloud
forecaster: Gizmo for Evaluation of Bulky
Cloud Computing Surroundings to Propagate
ICT based Education” September
2017International Journal of Engineering and
Technology 9(4):3396-3400DOI:
10.21817/ijet/2017/v9i4/170904177

