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I. INTRODUCTION 

When we build software, we have to gather all 
the requirements regarding that software. The 
initial phase of the software development life 
cycle is requirement gathering [1]. Both end user 
and developer are affected by these requirements. 
Whole requirement body is categorized into 
functional and non-functional requirements[2]. In 
which functional requirements are primarily 
revealed because it affects the life cycle of 
development directly.Software development 
totally based on functional requirements, but 
NFRs are included in those that supply the norms 
while implementing the code[3]. At the designing 
process, many authors have concerns about the 
NFRs and the problems of their inclusion[4]. 
Pavlovski and Zou [R1] describe NFRs as 
particular performance and operational constraints, 
such as work expectations and policy 
constraints[5]. While the reality is that, NFR’s are 
described in many ways. We learned, talked, and 
even faced these NFR’s but just because NFR’s 
does not affect the software  

 
 
 
directly so these are not considered acutely as 

they should be. Glinz [6] gives the advice that we 
have to make two separate parts of functional and 
NFRs and grouped them into two different sets so 
both requirements can inherently considered while 
developing the applications.  Alexander [7] said 
that when we focuses on the language which used 
to describe the requirements, we find a particular 
word as postfix that is ‘-ility’[8]. Examples of 
these words are portability and maintainability. 
His work is totally oriented on the recognition of 
NFR’s[9]. Our work establish on theirs by 
applying domain specific models using flexibility 
mechanisms construct into standard 
modelingnotations[10]. 

II. NEED OF THE STUDY 

Ranabahu and Sheth discus that, when we 
represent cloud application requirements there are 
four different modelling semantics necessary 
which include data, functional, non-functional and 
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system[11]. Their efforts oriented on functional 
and system requirements. There are some similar 
aspects in Ranabahu and Sheth and my work[12], 
but that is only in NFRs from the system point of 
view[13]. They build on the work done by Stuart 
in his workshops. There are three phases of the 
cloud application life cycle, in that Stuart defined 
well-formed modeling languages to model the 
cloud computing requirements. Those three phases 
of cycle are development, deployment, and 
management. Our work used to add those 
semantic categories of NFRs which are 
missing[14]. 

III. RESEARCH PROPOSAL 

 
All paragraphs must be indented.  All 

paragraphs must be justified, i.e. both left-justified 
and right-justified.For the study of all this, we 
consider mainly three NFRs that is response time, 
concurrency and pick seat time to implement our 
system “ticket booking system”. We model in 
UML and OCL deploying stereotypes to apply the 
additional required semantics for each NFR. To 
implement the NFRs, we focus on generation of 
codes of the model. We generate these codes for 
the NFRs which are used in cloud application. 
Then all applications use the thread on the server 
side for every user. 

A. Request response time 

In an online system, every one (client) interact 
with any application (on the server) by just 
making the request about that application in Cloud 
system. That request response time differentiates 
any application with other application and 
minimum request time is the main aspect by 
which every user selects its application. This time 
is one of the top most performance measures in 
our ticket booking system. We take this NFR and 
depict it as a ‘Response time’ stereotype in our 
UML activity diagram (Figure). This stereotype 
directly connects every relation between client and 
server. Generally, response time can be classified 
as the elapsed time between the requests has 
placed and the first response made. In an activity 
diagram, a control flow can be set the stereotype. 
We use control flow in the algorithm for applying 

this stereotype. In an initial step, we measure the 
time before the request is sent to the server. When 
a response is received, then the difference between 
times is checked. The response time is described 
by the difference of send and received time. The 
different latency requirements are depicted by the 
specific stereotypes. For example “low latency” 
and “high latency”. The permitting time for every 
stereotype can be defined through runtime 
configuration. For calculating the average 
response time for the whole system, we measure 
response time for every request generated by users 
is measured. By this approach, we measure an 
appropriate all over system performance. After 
that we can make the comparison of it over time. 
If there is a pattern of increased average response 
time, we can again notify the average response 
time of every module/ type of request and then 
find the bottlenecks. For ensuring this NFR, we 
use the implementation of Algorithm 1. In the 
algorithm, there is a rollback situation of any half 
work done. The client gives the notification to the 
server when the timeout occurs. The algorithm 
enables the server to rollback. In the algorithm, 
the client informs the server to enabling to 
rollback for any incomplete work, if there is a 
timeout condition occurs. 

B. Concurrency 

Concurrency is a robustness computation of any 
application, mainly for any online ticket booking 
system. This threshold concurrency is represented 
as ‘Simultaneous Users’ stereotype in the UML 
activity diagram (Figure). We make a pool of 
threads of size on stereotype. We execute this 
phenomenon by swapping the threads. All these 
requests are handled by the server by just making 
them in a queue. For processing every request, 
each instance of the request is pulled from the 
queue and is assigned to a thread from the pool. 
For execution of this stereotype that is measuring 
the concurrency, we judge and notify the latency 
of the request. We note particular timing at which 
the request is sent to the server and also measure 
that when the response is received from the server. 
We take latency for the request as the time 
difference between when the request is sent and 
server replied to that. This latency of each request 
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is noted and the queue time is adjoined to the 
record. For measuring the system performance 
totally, we use that measured record of latency. 
These records are used for comparison
If the average latency time increases, we can again 
take the average latency of each module/type of 
requests and find the bottlenecks. When 
measuring the concurrency stereotype, the 
bottleneck is frequently caused by a pool of 
threads. That bottleneck is smaller than the 
demand on the server. To guarantee this NFR, we 
use the implementation of Algorithm 2.

 

C. Pick seat time 

There is also a situation in which a user does not 
give any response to a running form in a definite 
time period. This is the major and essential NFR 
for many systems. In the online ticket booking 
system, the user goes through the system, then, 
select or pick the seat. When the user selects the 
seat, the resources are locked from other current 
user. The time duration of the locks are held needs 
to be minimized. The form response time 
requirements are represented in the standardized 
form in our UML activity diagram as ‘Limited 
user time’. In the ticketing application system, the 
stereotype which is particular to the booking sea
activity. The definite time is allotted to the user 
for picking its seat for response. For implementing 
this idea, we hold together, an event and request 
submission of the client. For measuring the time 
factor used by the user in the ticket booking 
system, the client application polls are used. This 
application poll continuously to checks that if the 
request is sent within the specified time. If a user 
makes late and take more time than the time 
specified by the stereotype, then the user receives 
a message in which by default all locks have been 
released. There is another situation in which the 
user’s request is sent before the specified time, 
and then the user will continue their task and 
proceed to the next activity. To guarantee this 
NFR, we use the implementation of Algorithm 3
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Figure.1 Activity Diagram

 
D. ALGORITHMS: 

 
Algorithm 1. Request Response Timeout 

INPUT:HTML5 of request to Server, 
completion_ time 

OUTPUT: HTML5 of response with server 
Send request to server Set timer to hit every 

second Set holdTimeLimit = 0 Do 
Check if response is received  

While holdTimeLimit<compeletion_time or 

response received  
If response not received  
Set response as “Expired Time” error 

Set response to timeout error  
Examine server of compeletion_time

End if  

Return response  
 
Algorithm 2. Concurrency  

INPUT: HTML5 of request, 
compeletion_timeOUTPUT:  HTML5 of data 
entered or HTML5 with error  
Check if any threads in pool 

If no threads in pool Set timer to hit every 

second Set holdTimeLimit = 0 Do 

Check if thread available in the pool 

While holdTimeLimit<compeletion_time or 

thread received  

If not thread received  
Set response to timeout error  
ELSE  

Execute request in thread  

End if  

Return response 
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Algorithm 1. Request Response Timeout  
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HTML5 of response with server  
Send request to server Set timer to hit every 
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Set response as “Expired Time” error  
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second Set holdTimeLimit = 0 Do  
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Algorithm 3. User Response Timeout  
INPUT:HTML5 of form to 
display,compeletion_time 
OUTPUT: HTML5 of data entered or HTMl5 
with error  
Display form to user Set timer to hit every 

second 

Set compeletion_time = 0 Do  
Check if response is received  
While holdTimeLimit<compeletion_time or 

response received  

If response not received  
Notify user of time expiration  
Set response to timeout error  
End if  

Return response 
 
NON-FUNCTIONAL REQUIREMENTS THAT 

AFFECT THE USER’S SELECTION TOWARDS THE 

CLOUD SERVICE PROVIDER:- 

In today’s scenario, there are ma
cloud providers in the market. But we also make 
our selection on the basis of NFRs which directly 
affects the user. This is discussed before, in the 
start of this paper. Here we make a chart of 
leading applications which shows the situation of 
market of cloud providers.    

Security Feature:-Amazon Web Service uses 
several Operational Security features like 
Vulnerability management, Malware prevention, 
Monitoring, Incident management, Server and 
Software Stack Security, Trusted Server Boot, 
Secured Service APIs and Authenticated Access, 
Data Encryption, Network Firewall Rule 
Maintenance.  

Here are the cloud leaders we will profile:
    Amazon Web Services 
    Microsoft Azure 
    IBM Cloud 
    Google Cloud Platform 
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5.5. PUBLIC CLOUD PROVIDERS 

COMPARISON CHART 

When we look at the comparison of the 
dominant and leading public cloud providers we 
have to be very careful: few of the services truly 
line up in an “apples-to-apples” similar style. 
There are several cloud providers which provide 
their services to us but we choose our provider on 
the basis of some important features. The chart 
below should help us to get started.
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5.5.  BASIC NON-FUNCTIONAL 

REQUIREMENTS COMPARISON OF 

LEADING CLOUD PROVIDERS 
When we look at public cloud providers which 

provide basically the internet, there are a great 
number of options in the market to select our 
appropriate service. As an example, more than 

95public clouds are registered with the monitoring 
service [R12].Now days, every public cloud 
provider has several proposals of heterogeneous 
services for their clients. We cannot directly 
compare these services with other cloud 
provider’s services because of diversity in services. 
Just because our work is focuses on Non-
Functional Requirements we choose some leading 
cloud providers here, which are in the market and 
provides us their utilities: 
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IV. CONCLUSIONS 

In this work, we show that we can map NFR’s 
to many cloud based applications using UML 
stereotypes. As we know that UML is the 
modeling diagram in which we show the process 
in an incremental and interactive way. We expand 
the NFR’s to design the model for Cloud based 
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application rather than functional requirements. 
We model in UML and OCL deploying 
stereotypes to apply the additional required 
semantics for each NFR. We focus on basic three 
NFR’s by which we gather the information about 
our end user’s transaction and response. Future 
work will enhance my work to include these 
NFR’s for modeling and converting the codes of 
NFR’s into cloud application tools and also 
enhances the type of NFR’s for other upcoming 
methodologies. By this, we can develop the 
quality of these methodologies. Our work 
enhances the performance and characteristics of 
applications. This will also reduce the error rate.   
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