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Abstract:
This research focuses on the early detection of Melanocytic Nevus using machine learning and deep

learning models for classifying skin lesions as benign or malignant. The study employs ensemble
classifiers and customized Convolutional Neural Networks (CNNs) to evaluate their performance on
Melanocytic Nevus images. The performance of four kernel-based ensemble models (linear, polynomial,
radial basis function, and sigmoid) is compared, with the linear kernel achieving the highest accuracy of
94.74%. Precision, sensitivity, and specificity measures further highlight the linear kernel's strong
performance. In addition to ensemble classifiers, three customized CNN models based on ResNet50 and
VGG16 architectures are developed and tested. Model-1 outperforms the other two CNN models with an
accuracy of 82.29%, while Model-3 exhibits the highest sensitivity. Pretrained models like VGG16 show
moderate accuracy, with ResNet50 initially improving performance but experiencing a decline due to
overfitting at higher epochs. The results demonstrate that ensemble classifiers, particularly with linear
kernels, offer reliable performance for melanoma detection, while CNNs, despite their potential, require
careful tuning to avoid overfitting. The research highlights the importance of combining ensemble
methods with deep learning techniques to improve accuracy in early skin cancer detection. Future work
may explore hybrid models, larger datasets, and real-time implementation for clinical use.

Keywords—Melanocytic Nevus, ensemble classifiers, Convolutional Neural Networks, skin cancer
detection, machine learning, deep learning
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I. INTRODUCTION
Melanocytic Nevus, commonly known as a mole

or birthmark, is a benign growth of melanocytes in
the skin. While most nevi are harmless, some can
transform into melanoma, a deadly form of skin
cancer. The primary risk factor for melanoma is
prolonged exposure to ultraviolet radiation (UVR),
which is responsible for triggering genetic
mutations in melanocytes. According to the World
Health Organization (WHO), melanoma rates are
increasing globally, with more than 1.2 million new
cases reported annually, making it one of the
fastest-growing cancers worldwide [1].
Geographical location, skin pigmentation, and UV
exposure play significant roles in melanoma
development. Areas with higher UV exposure, such

as regions closer to the equator, see more cases of
melanoma, but recent studies also indicate higher
incidences in regions with lower sunlight exposure,
especially among younger populations [2][3].
Melanocytic Nevus is a key indicator for
identifying the early stages of melanoma. Malignant
melanomas often exhibit irregular borders,
asymmetry, and an increase in size, unlike benign
nevi, which generally have uniform shapes and
small sizes. Early detection of melanoma is crucial
for successful treatment and can greatly increase the
chances of survival. Traditional methods of
melanoma detection rely heavily on dermatologists'
expertise in evaluating visual patterns in skin
lesions. However, manual inspection can be
subjective and prone to errors, leading to delayed
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diagnosis [4]. Recent advancements in machine
learning and image processing techniques have led
to the development of automated systems for early
detection of melanocytic nevi. One promising
approach is the use of Convolutional Neural
Networks (CNNs), which have demonstrated great
success in image classification tasks, particularly in
medical imaging. CNNs are adept at automatically
learning hierarchical features from images, making
them ideal for classifying skin lesions based on
their visual attributes. While CNN-based models
have shown impressive results, they can still suffer
from overfitting or underperformance on specific
data sets. To address this, ensemble methods that
combine the predictions of multiple models have
emerged as a powerful tool to enhance
classification accuracy and robustness. By
leveraging the strengths of various CNN
architectures and aggregating their predictions,
ensemble learning can significantly improve the
early detection of malignant melanocytic nevi, thus
facilitating timely medical intervention [5].
This research aims to investigate the application of
ensemble methods in the early detection of
melanocytic nevi, combining the outputs of
multiple CNN models to create a more reliable and
accurate classifier for skin cancer diagnosis.

II. LITERATURE REVIEW
The early detection of skin cancer, particularly

melanocytic nevus and melanoma, has garnered
significant attention in recent years due to the
increasing rates of skin cancer worldwide.
Melanocytic nevus is a benign tumor that can
evolve into malignant melanoma if not identified
early. A range of approaches have been explored to
classify skin lesions, including traditional methods
based on visual inspection and modern machine
learning techniques. Early methods for melanoma
detection have heavily relied on clinical visual
inspection and dermoscopic. The assessment is
largely dependent on the experience of the
dermatologist, with characteristic features such as
asymmetry, irregular borders, and color variations
often indicative of melanoma [6]. Despite its
effectiveness, this method can be subjective,
leading to inconsistent results. To address this,

several studies have explored automated image
analysis techniques, which offer more objective and
repeatable results [7]. Feature extraction techniques,
combined with image segmentation, are commonly
used for classifying skin lesions. Kadir et al. [8]
proposed a method of segmenting the skin lesions
from dermoscopic images and extracting features
like color, texture, and shape for classification using
machine learning algorithms. Similarly, Garcia et al.
[9] used color and texture features to classify skin
lesions, with promising results for early detection.
The effectiveness of these methods is largely
dependent on the quality of the feature extraction
process, which can be impacted by image quality
and preprocessing techniques. Over the past decade,
the application of Convolutional Neural Networks
(CNNs) has revolutionized the field of medical
image analysis. CNNs, a class of deep learning
models, have shown superior performance in
classifying images by learning hierarchical features
directly from the data without the need for manual
feature extraction. Esteva et al. [10] demonstrated
that CNNs could classify skin cancer images with
accuracy comparable to dermatologists. CNNs'
ability to learn and adapt to complex patterns in
large image datasets has made them particularly
effective for skin cancer detection. Despite the
success of individual CNN models, they can still
face limitations, such as overfitting, poor
generalization, and sensitivity to variations in input
data. Ensemble learning, which combines multiple
models to improve predictive accuracy, has shown
great promise in mitigating these issues. A study by
Zhang et al. [11] utilized an ensemble of CNNs to
enhance skin lesion classification accuracy,
achieving better performance than individual
models. By aggregating the predictions from
several different models, ensemble methods reduce
bias and variance, thus improving classification
robustness. Ensemble methods have been applied to
various medical image classification tasks,
including skin cancer detection. Ali et al. [12]
proposed an ensemble learning approach that
combined different deep learning models to classify
melanoma images. Their method used an ensemble
of CNNs trained on different image representations,
significantly improving classification accuracy over
standalone models. Furthermore, Li et al. [13]
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demonstrated that ensemble learning, particularly
when combining decision trees and deep learning
networks, yielded superior results for detecting
malignancies in medical images. Several
researchers have explored hybrid models that
combine CNNs with other classifiers, such as
Support Vector Machines (SVMs) and Random
Forests (RF). Marquez et al. [14] integrated CNN
features with SVM classifiers, achieving high
accuracy for melanoma detection. The integration
of traditional classifiers with deep learning models
can leverage the strengths of both methods,
improving classification performance while also
providing interpretability in some cases. The
successful application of CNNs and ensemble
learning techniques in skin cancer classification has
the potential for real-world clinical implementation.
A study by Fischer et al. [15] evaluated the
application of deep learning models in a clinical
setting and found that automated classification
systems could aid dermatologists in diagnosing skin
cancer more accurately and efficiently. The clinical
adoption of such systems is encouraged, especially
for settings where expert dermatologists may be in
short supply. Despite the promising results from
deep learning models, there are still significant
challenges in applying these techniques in real-
world clinical environments. Models must be
trained on large, diverse datasets to ensure
robustness across different populations and skin
types. Moreover, the black-box nature of deep
learning models, where it is difficult to interpret
how a model makes a particular decision, remains a
significant challenge [16]. Efforts to enhance model
transparency and explainability are essential for
their acceptance in clinical practice. When
evaluating models for skin cancer detection, several
metrics are used to assess performance, including
accuracy, sensitivity, specificity, precision, and the
F1 score. These metrics are critical for
understanding how well the model generalizes
across different types of skin lesions and whether it
can identify malignant cases while minimizing false
positives. A study by Zhang et al. [17] highlighted
the importance of these metrics in evaluating deep
learning models for medical imaging, stressing the
need for careful consideration of trade-offs between
precision and recall. Several public datasets have

been used to train and evaluate machine learning
models for skin cancer classification. Notable
examples include the dataset, which contains over
20,000 labeled dermoscopic images of skin lesions.
These datasets have become a cornerstone for
evaluating and benchmarking algorithms in the
field of skin cancer detection. The availability of
such datasets has accelerated the development of
automated diagnostic tools and allowed for the
comparison of various machine learning approaches
[18].
The future of skin cancer detection lies in the
integration of deep learning models with real-time
clinical decision support systems. There is an
increasing emphasis on developing models that can
not only classify images but also predict the risk of
malignancy with high accuracy. Additionally,
efforts are underway to develop more robust models
that are less sensitive to image quality variations
and lighting conditions, which often affect
dermatological images [19]. Another promising
direction is the use of multimodal approaches that
combine multiple sources of information, such as
clinical images, patient history, and genetic data.
Studies by Ma et al. [20] have shown that
combining image-based classifiers with clinical
data can improve prediction performance, leading
to better diagnostic accuracy. These multimodal
approaches allow for more comprehensive
assessments and are expected to play a key role in
the future of melanoma detection.
The application of machine learning, particularly
CNNs and ensemble methods, holds immense
promise for improving the early detection of
Melanocytic Nevus and melanoma. The integration
of multiple models through ensemble learning can
enhance the robustness and accuracy of these
systems, overcoming the limitations of individual
models. Despite the progress made, challenges
remain in the clinical adoption of these technologies,
including issues of explainability and data quality.
Future research must continue to refine these
systems, with a focus on multimodal approaches,
real-world validation, and integration into clinical
workflows. Recent advancements in deep learning
have significantly contributed to skin cancer
detection, particularly for conditions like
melanocytic nevus and melanoma. Esteva et al.
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(2017) demonstrated that a deep learning model
based on Convolutional Neural Networks (CNNs)
can perform skin cancer classification at a level
comparable to experienced dermatologists. Their
study revealed that CNNs are highly efficient at
automatically extracting features from dermoscopic
images and classifying lesions as benign or
malignant, marking a milestone in the potential use
of deep learning in dermatology [19]. Zhang et al.
(2019) explored the use of ensemble learning
methods for improving the accuracy of skin cancer
detection. Their study combined multiple deep
learning models to classify melanoma images,
demonstrating that ensemble techniques enhance
performance by reducing errors that individual
models might make. This approach allowed for
more robust and generalized results, improving the
accuracy of skin cancer predictions across various
datasets [20].
Marquez et al. (2018) proposed a hybrid machine

learning model that combines deep learning with
traditional algorithms like Support Vector Machines
(SVM) for the detection of melanoma. Their
approach leverages the feature extraction
capabilities of CNNs and the classification power of
SVMs, demonstrating improved accuracy in
distinguishing between benign and malignant
lesions. This hybrid model has the potential to
overcome limitations found in using either method
alone [21]. Ma et al. (2019) highlighted the
importance of multimodal data in improving the
performance of skin cancer detection models. Their
research combined various data types, such as
dermoscopic images and patient demographics, to
develop more accurate detection systems. By
incorporating both clinical and image-based data,
their study demonstrated that multimodal
approaches offer better generalization and higher
precision in classifying melanoma and other skin
conditions [22]. Kadir et al. (2017) applied
advanced image segmentation techniques to extract
important features from skin lesion images, which
were then used to classify lesions as benign or
malignant. Their study utilized CNNs for deep
feature extraction, followed by machine learning
algorithms to classify the lesions. This method
enhanced the accuracy of skin cancer classification,
particularly in distinguishing subtle differences

between benign melanocytic nevi and malignant
melanoma [23].

III. RESEARCH OBJECTIVE

Followings are important objectives of the
research work carried out.

(i) Data Collection and Preprocessing: Collect
a diverse set of Melanocytic Nevus images,
ensuring it includes both benign and
malignant examples. Preprocess the data by
normalizing the images, resizing them, and
using augmentation techniques to enhance
model training and generalization.

(ii) Development and Training of CNN Models:
Develop and train several Convolutional
Neural Network (CNN) models, such as
VGG16, ResNet, and Inception, to extract
key features from Melanocytic Nevus
images. Optimize these models to achieve
the best possible performance by fine-tuning
parameters and applying regularization
techniques to prevent overfitting.

(iii)Enhancing Classification through Ensemble
Methods: Implement ensemble learning
techniques to combine multiple CNN
models, aiming to improve classification
accuracy and robustness. Explore different
methods for aggregating model predictions,
including majority voting and weighted
averaging, to enhance overall performance.

(iv) Performance Evaluation and Clinical
Applicability: Evaluate the performance of
the ensemble-based model using key metrics
like accuracy, precision, recall, and F1 score.
Assess the system’s potential for real-world
clinical applications, focusing on its ability
to assist in the early detection of malignant
lesions and improve diagnostic accuracy for
dermatologists.

IV. METHODS AND METHODOLOGY

There are two categories of Melanocytic nevus. :
(i) Benign (ii) Malignant.
The important characteristics can be listed as the
early detection of skin cancer, particularly
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melanocytic nevi, heavily relies on identifying key
visible characteristics that distinguish benign moles
from malignant lesions, such as melanoma. One of
the most critical features is asymmetry; benign nevi
are usually symmetrical, whereas melanoma lesions
tend to have irregular, asymmetric shapes. Another
significant characteristic is the border irregularity—
benign moles typically have smooth, well-defined
borders, while malignant nevi often show jagged,
uneven, or blurred edges. Color variation also plays
a key role; benign nevi usually exhibit a uniform
color, but melanomas may display multiple shades,
including brown, black, and even red or blue. Size
and growth are equally important; benign moles
tend to remain stable in size, while melanoma
lesions often grow rapidly, surpassing 6mm in
diameter. The surface texture of a lesion can also
provide valuable information; benign moles are
generally smooth, while malignant nevi may be
rough, scaly, or even ulcerated, showing signs of
tissue breakdown. Bleeding or oozing from a lesion
is another red flag for melanoma, as these
characteristics are rare in benign moles. Pigment
distribution within a mole is another distinguishing
feature; benign nevi have evenly distributed
pigmentation, while melanomas often exhibit
patchy or uneven coloring. Additionally, symmetry
of color distribution is a crucial characteristic—
benign nevi show uniform color, while melanoma
typically displays asymmetric pigment patterns.
These visible traits, such as asymmetry, irregular
borders, color variation, size, texture, bleeding, and
pigment distribution, can be efficiently detected
through Convolutional Neural Networks (CNNs),
which analyze complex visual patterns to classify
skin lesions as benign or malignant. Through this
process, CNNs assist dermatologists in identifying
potentially harmful lesions and facilitating early
intervention for skin cancer, ultimately contributing
to better patient outcomes.
The characteristics used for the CNN(Convolution
Neural Network) model are :
(i) Asymmetry: Benign nevi are typically
symmetrical, while malignant lesions (such as
melanoma) tend to be asymmetrical, with one half
not matching the other.
(ii) Irregular Borders: Benign moles have smooth,
well-defined borders. Malignant nevi, on the other

hand, often exhibit jagged, uneven, or blurred
borders.
(iii) Color Variation: Benign nevi usually have a
uniform color, typically brown or black. Malignant
nevi often display multiple colors, including shades
of brown, black, red, or even blue.
(iv) Surface Texture: Benign nevi typically have a
smooth texture, while malignant lesions may be
rough, scaly, or ulcerated, indicating potential
cancerous changes.
(vi) Pigment Distribution: Benign moles generally
have evenly distributed pigmentation, whereas
melanoma lesions often show uneven or patchy
pigmentation.
(viii) Symmetry of Color Distribution: Benign nevi
have a uniform color distribution, while malignant
lesions may exhibit asymmetric patterns of color
within the mole.
These eight characteristics can be effectively
detected and analyzed through Convolutional
Neural Networks (CNNs), helping to distinguish
between benign and malignant lesions for early
detection and intervention.

Fig.1(a): Bening images of Melanocytic Nevus
[Source: ISIC (International Skin Imaging Collaboration)

dataset]

Fig.1(b): Bening images of Melanocytic Nevus
[Source: ISIC (International Skin Imaging Collaboration)

dataset]

http://www.ijcsejournal.org/


International Journal of Computer science engineering Techniques-– Volume 9 Issue 2, Mar-Apr-2025

ISSN: 2455-135X http://www.ijcsejournal.org Page 33

Fig.2(a): Malignant images of Melanocytic Nevus
[Source: ISIC (International Skin Imaging Collaboration)

dataset]

Fig.2(b): Malignant images of Melanocytic Nevus
[Source: ISIC (International Skin Imaging Collaboration)

dataset]

A. Dataset Used:

For the research on early detection of Melanocytic
Nevus using Convolutional Neural Networks
(CNNs), the use of an appropriate image dataset is
crucial for training and evaluating the model. A
commonly used open-source image dataset for this
purpose is the ISIC (International Skin Imaging
Collaboration) Archive[24], which provides a large
collection of dermoscopic images of skin lesions,
including melanocytic nevi. This dataset is widely
adopted for research in the field of skin cancer
detection, offering a broad variety of images, both
benign and malignant, enabling the development
and testing of models aimed at classifying skin
lesions.
Image Dataset Used: ISIC Archive
The ISIC Archive offers dermoscopic images of
skin lesions, including melanocytic nevi, melanoma,
and other types of skin cancer. The dataset contains
over 25,000 annotated skin lesion images, with
ground truth labels indicating whether a lesion is
benign or malignant. It includes both training and
test sets with high-resolution images, which makes

it suitable for deep learning applications such as
Convolutional Neural Networks (CNNs).
The images in the ISIC dataset are pre-processed to
ensure uniformity in size and resolution, which is
essential for CNN applications. Most of the images
in the dataset are resized to a consistent resolution
(e.g., 224x224 pixels), ensuring compatibility with
popular deep learning frameworks. This uniformity
enables accurate and efficient model training, as the
CNN model can process each image without
needing to handle varying dimensions or resolution
discrepancies.
In addition to the lesion images, the ISIC dataset
also provides valuable metadata, such as
dermoscopic information, patient demographic
details, and categorical labels (e.g., benign,
malignant, or ambiguous). This comprehensive
information allows for detailed analysis and model
evaluation in various contexts, such as image
classification and segmentation.
Dataset Details:
Total number of images: Over 25,000 annotated
images.
Image format: JPEG or PNG.
Resolution: Resized to a uniform size (224x224
pixels).
Categories: Benign, malignant, and various
subtypes of skin lesions.
Labels: Ground truth annotations, including lesion
type (benign or malignant) and additional features
like lesion location and dermoscopic details.
License: Open source, freely available for academic
and research purposes.
This dataset is highly valuable for training CNN
models, as it provides a large and diverse set of
images that represent a variety of skin conditions.
Using the ISIC dataset, 25331 images were selected
out of which 13330 are malignant melanocytic nevi
and 12001 benign melanocytic nevi. This open-
access dataset facilitates the development of deep
learning models that can potentially aid in the early
detection of skin cancers such as melanoma, thus
contributing significantly to medical advancements
in dermatology.
The dataset is split into training and testing sets
with an 80%-20% ratio, employing a random
selection mutual exclusion method across four folds.
Each fold is trained and tested using a classifier.
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The performance of each fold is analyzed by
utilizing different techniques and aggregating the
results from all four folds to determine the final
performance metrics.

B. Kernel Functions:
Linear Kernel: The linear kernel is effective for
handling large numbers of features and is
particularly efficient when dealing with text
classification datasets. It is linearly separable and
provides a straightforward approach for
classification.
k(X, Y) = 1+xy+xy min( x , y) – ((x+y)/2) min(x,y)2 +
1/3(min(x,y)3) (1)
Polynomial Kernel: Widely used in image
processing problems, the polynomial kernel's
degree (denoted as "d") controls the complexity of
the kernel function. The polynomial kernel is
suitable for capturing the relationships between
image features.
k (Xi, Xj) = (Xi٠Xj + 1)d (2)

Radial Basis Function (RBF): The RBF kernel,
including Laplace and Gaussian Radial Basis
functions, is often used when the underlying data
distribution is unknown. It is particularly useful in
cases where the relationship between data points is
nonlinear.
k(Xi , Xj) = exp ( - γ || Xi – Xj ||2) (3)
where γ > 0.
Sigmoid Kernel: The sigmoid kernel is relevant for
certain neural network-based classifiers but may not
be significant in all cases.
k(x,y) = tanh(αxTy + c) (4)

V.MODEL EVLUTION AND RESULT ANALYSIS

Three custom models are developed based on
Convolutional Neural Networks (CNNs), utilizing
the architectures of ResNet50 and VGG16. These
models leverage their inherent feature extraction
capabilities to train two classifiers. A total of five
classifiers are trained using an image dataset
containing malignant and benign melanocytic nevi
images.
The dataset used for training includes 10,664
images of malignant lesions and 9,601 images of
benign lesions. For the testing process, the set

consists of 2,666 malignant images and 2,400
benign images, The images are pre-processed, and
having size of 224x224 pixels hence dimensionality
reduction is not applied for any standardization.
Additionally, the images are augmented through
techniques like zooming (with a zoom factor of 0.3),
vertical flipping, and reshaping with a scale factor
of 1/0.255. The ReLU activation function is used
for hidden layers, while the Adam optimizer is
employed to improve model training efficiency. For
binary classification, the output layer uses a
sigmoid activation function to predict the class label
(benign or malignant).
The models are evaluated using their performance
matrices, which are computed after training. The
dimensionality reduction process helps to reduce
computational load while maintaining important
features of the images for accurate classification.

Table-1(a)
PARAMETERCOMPARISIONOFMODEL-1 TOMODEL-3
Parameters Model-1 Model-2 Model-3
Model Type: Customized Customized Customized
Epochs: 15 25 25

Batch-Size: 64 64 64
Dimension: 224x224 224x224 224x224
Convolution
Blocks:

02 with 02
layers

03with 02
layers

03 with 02
layers

Filters 16 and 32 16 ,32 and
64

16 ,32 and
64

Pooling: Maxpool Maxpool Maxpool
Hidden
Layers:

02 02 03

Activation
Function:

ReLu ReLu ReLu

Optimizer: Adam Adam Adam
Output Layer
Activation
Function

Sigmoid Sigmoid Sigmoid

Table-1(b)
PARAMETERCOMPARISIONOFMODEL-4 ANDMODEL-5
Parameters Model-4 Model-5
Model Type: VGG16 ResNet50
Epochs: 25 25, 50 and 100

Batch-Size: 32 64
Dimension: 224x224 224x224
Convolution
Blocks:

04 with total
13 layers

Pre-trainedmodel
weights with 50
layers including
input and output
layers.

Filters 64,128, 256,
512,512
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Kernel Type F1-score Jaccard-score AUC Accuracy
Linear 0.9476 0.9473 0.9981 0.9474

Polynomial 0.9537 0.9532 0.9992 0.9532

RBF 0.9365 0.9365 0.9823 0.9367

Sigmoid 0.3173 0.3173 0.9964 0.3376

VI. PERFORMANCE ANALYSIS

The ensemble-based classifier model was
trained and evaluated on both the training and
testing datasets. The dataset was divided into
four folds, with each fold being trained
separately using four different kernel functions.
These kernel functions included Linear,
Polynomial, Radial Basis Function (RBF), and
Sigmoid. After training, the models were tested
individually on the testing dataset from all four
folds. The performance of each model was
assessed using a confusion matrix, and the mean
performance metrics were calculated for all four
folds, as shown in Table-2.

Table 2(a). Design and architecture of FourModels.
Kernel
Type

Precision Sensitivity

Linear 0.9123 0.9823

Polynomial 0.9272 1.0000

RBF 0.9091 0.9901

Sigmoid 0.5381 0.4661

Table-2(b). Design and architecture of FourModels.
Kernel
Type

Specificity Accuracy

Linear 0.8313 0.9372

Polynomial 0.8941 0.9532

RBF 0.8571 0.9367

Sigmoid 0.0000 0.3923

In order to assess and evaluate the performance of
Ensemble-based models using four different kernels,
various metrics are considered in addition to accuracy.
These include the F1-score, Jaccard index, and Area
Under the Curve (AUC), as shown in Table-3.
Table 3. Performance measures for SVM models using four diverse
kernels.

The three customized CNN-based models were
evaluated and compared using performance metrics
derived from the confusion matrix. Each of the
three models was trained and tested with a batch
size of 64. A Model Checkpoint callback was
implemented for all three models to save the
weights of each model at various epochs.
Additionally, an Early-Stopping callback was
employed to address generalization gap issues and
prevent overfitting.
Model-1 was trained for 15 epochs, while Model-2
and Model-3 were trained for 25 epochs. This
model architecture included two convolutional
layers, with both the first and second layers
utilizing 16 filters of size 3x3 and a ReLU
(Rectified Linear Unit) activation function. These
layers were followed by a MaxPooling layer with a
2x2 size and a dropout rate of 0.2 to reduce
overfitting. After flattening, the fully connected
layer consisted of two hidden layers with 128 and
64 nodes, respectively, using ReLU activation and
dropout rates of 0.5 and 0.3. The output layer used a
sigmoid activation function, suitable for binary
classification. The model was compiled using the
Adam optimizer and the Binary Cross-Entropy loss
function. The output metrics, including accuracy,
were obtained using a confusion matrix. Weights
were preserved during training through the Model
Checkpoint. Furthermore, the ReduceLROnPlateau
function was used to adjust the learning rate by
monitoring the validation loss, with a factor of 0.3
and verbosity set to 2.
Model-2 and Model-3 had slight differences in their
architectures compared to Model-1, particularly in
the number of convolutional layers, the size and
number of filters, and the design of hidden layers,
as detailed in Table-1. Performance metrics for all
three models, such as accuracy, precision, recall,
specificity, and sensitivity, were calculated from the
confusion matrix results.

Pooling: Maxpool
Hidden
Layers:

02with 1028
nodes

Activation
Function:

ReLu ReLu

Optimizer: Adam Adam
Output Layer
Activation
Function

Sigmoid Softmax
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Table 4(a). Performance measures customized CNNmodels.
Model Accuracy Precision Recall
Model-1 81.23% 82.88% 82.33%
Model-2 79.63% 72.77% 89.72%
Model-3 80.20% 69.44% 90.27%

Table 4(b). Performance measures customized CNNmodels.
Model Specificity Sensitivity
Model-1 82.88% 85.35%
Model-2 73.36% 89.72%
Model-3 71.86% 90.27%

Two additional classifier models, VGG16
and ResNet50, were trained on the training dataset
and evaluated over 20 epochs. The VGG16 model
includes five convolutional blocks and a total of
sixteen layers, with each layer utilizing the ReLU
activation function. It also incorporates MaxPooling,
with varying numbers of filters, kernel sizes,
pooling sizes, and strides. On the other hand, the
ResNet50 model utilized pre-trained weights to
validate the test dataset. In this case, the model
performed transfer learning by leveraging the initial
kernel weights, enabling efficient feature extraction
during the validation process.

VII. RESULT ANALYSIS

The performance of ensemble classifiers and three
customized CNN models, including the VGG16 and
ResNet50 models, is compared and summarized as
follows, with reference to Table-2:
(i) The ensemble classifier using the linear kernel
achieved the highest accuracy at 93.72%,
outperforming the other kernel-based classifiers. On
the other hand, the classifier based on the sigmoid
kernel showed the lowest accuracy at 31.71% (refer
to Table-2).
(ii) When considering metrics like precision,
sensitivity, and specificity, the linear kernel-based
ensemble classifier outperformed the others,
yielding 91.23% precision, 98.23% sensitivity, and
83.13% specificity. In contrast, the sigmoid kernel-
based classifier performed poorly, with scores of
53.81% precision, 46.61% sensitivity, and 0.00%
specificity.
(iii) The F1-score and Jaccard index further validate
the classifier performances by examining accuracy,
specificity, sensitivity, and precision. The highest
F1-score and Jaccard index were observed for the
polynomial kernel-based classifier, making it the

top performer among all classifiers. However, the
linear kernel-based classifier demonstrated
performance very close to the polynomial kernel-
based classifier.
(iv) When comparing the performance of the
customized CNN-based classifiers, Model-1
achieved an accuracy of 81.23%, which was the
highest among the three CNN models. Model-3
achieved a recall/sensitivity of 90.27%, but overall,
Model-1 maintained the best balance of accuracy,
precision, recall, specificity, and sensitivity.
(v) The VGG16-based CNN model showed no
significant improvement in performance with 25
epochs of training. The accuracy remained around
58.35% even when trained with the Adam
optimizer and binary cross-entropy loss function
over a range of 25 to 50 epochs. The model
contained 139,506,497 trainable parameters. In
contrast, the ResNet50-based classifier
demonstrated improved accuracy, reaching 80.23%
at the 25th epoch. However, as the number of
epochs increased, overfitting led to a decline in
performance, with accuracy dropping to 75.67% at
50 epochs and 71.81% at 100 epochs.

VIII. CONCLUSION
In conclusion, this research investigates the early
detection and classification of Melanocytic Nevus
using a combination of ensemble classifiers and
customized CNN models. The primary focus was
on evaluating the performance of these classifiers in
distinguishing between benign and malignant skin
lesions, particularly Melanocytic Nevus. The study
utilized a variety of machine learning and deep
learning techniques, comparing the effectiveness of
different kernels in ensemble models as well as the
performance of CNN architectures like VGG16 and
ResNet50.
The ensemble classifier demonstrated significant
accuracy with the linear kernel outperforming the
other kernel-based models, achieving an accuracy
of 94.74%. Additionally, it showed strong
performance in terms of precision, sensitivity, and
specificity, with the linear kernel-based classifier
outperforming others in these metrics as well.
However, the sigmoid kernel performed poorly
across all metrics. These findings indicate the
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importance of selecting appropriate kernels to
optimize model performance in classification tasks.
The customized CNN models were also analyzed,
with Model-1 achieving the highest accuracy at
82.29% among the CNN-based models. While
Model-3 demonstrated higher sensitivity, Model-1
maintained better consistency across all
performance metrics, making it the top performer
among the customized models. The use of
pretrained CNN architectures like VGG16 and
ResNet50 was also explored. The VGG16 model
showed moderate performance with consistent but
low accuracy, while the ResNet50 model initially
improved with more epochs but experienced a drop
in accuracy due to overfitting beyond 25 epochs.
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FUTURE SCOPE OF RESAERCH
Future work in the early detection of Melanocytic
Nevus using machine learning and deep learning
can focus on several key areas. First, the
optimization of CNN architectures, particularly
fine-tuning hyperparameters and incorporating
advanced regularization techniques, could further
enhance the model's accuracy and reduce
overfitting. Additionally, exploring hybrid models
that combine the strengths of both ensemble
classifiers and deep learning networks could
improve classification performance by leveraging
complementary approaches. Future studies could
also involve the use of larger and more diverse
image datasets to ensure model generalization
across different populations and skin types.
Furthermore, the integration of transfer learning
with more advanced pre-trained networks may help
improve detection accuracy, especially for rare or
challenging cases. Lastly, real-time implementation

Overall, the research highlights the effectiveness of
using both traditional machine learning techniques
like ensemble classifiers and modern deep learning
models for the early detection of Melanocytic
Nevus. The findings indicate that ensemble models,
particularly with the linear kernel, offer robust
performance for melanoma detection, while CNN
models, despite their potential, require careful
tuning and regularization to avoid overfitting.
Future work could focus on further optimization of
CNN architectures and the exploration of hybrid
approaches combining the strengths of both
ensemble methods and deep learning for more
accurate and efficient skin cancer classification.

and deployment of these models in clinical settings
could be explored, ensuring they are both efficient
and scalable for widespread use in healthcare
applications.
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