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I. INTRODUCTION
The design of brain computer interface (BCI)

applications with electroencephalography (EEG) is
one of the most challenging task, which translates
the mental imagination of movement to commands
without any muscle movement or activities of any
peripheral nervous system [1, 2, 3]. There are a
number of BCI applications including the field of
brain science, neural engineering, and rehabilitation.
They make use of prosthetics, robots, and other
devices which are fully controllable by mental
intentions [1], [4, 5, 6]. There exist some various
EEG signal properties for BCI that distinguished
brain task. The EEG signal is a collection of some
rhythmic components also called brain waves.
There are five major rhythmic components

distinguished with their own frequency limits [7].
The EEG is the electrical activity of the brain’s
neurons recorded at the scalp surface [8]. They
consist of several rhythm bands: delta (1–4 Hz),
theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz)
and gamma (>30 Hz). Because the rhythms reflect
different physiological and pathological
information, EEG rhythms extraction has been
widely applied in many areas. Examples include
portable and wearable EEG devices, mental fatigue
assessment, disease diagnosis, and brain computer
interface systems [9].
Individual rhythmic carries important

information of the overall EEG signal which
represents the brain activities. The extraction of
each component implies to filter out a specific
range oscillating frequencies from the multi-

Abstract:
Electroencephalography (EEG) signal collected from scalp surface is a non-invasive approach to

study human brain activities. The rhythmic components of EEG signal illustrate the neural activities and
effective to implement brain computer interface (BCI). This research presents an effective method of
rhythmic component extraction (RCE) from multi-channel EEG. The proposed approach is based on
multivariate empirical mode decomposition (MEMD). It decomposes multichannel EEG signal into a
finite set of subband signals termed as intrinsic mode functions (IMFs). Such decomposition is fully data
adaptive and effective for non-stationary signal. Each IMF is a time varying band limited signal. It is
filtered using a Fourier Transform based zero phase bandpass filter for a specific rhythmic component.
The rhythmic component obtained from all the IMFs of the EEG channel are summed up yielding the
channel’s rhythmic component. Therefore, majority of the desired components of individual channels are
extracted using the same method. The energies of different extracted rhythmic components are compared
as a function of channels. To further improve the proposed method, the inter-channel correlation is taken
into consideration during decomposition with MEMD hence it is very much effective for RCE from
multichannel EEG signal.

Keywords— Bandpass filtering, electroencephalography (EEG), multivariate empirical mode
decomposition (MEMD), rhythmic component.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcsejournal.org


International Journal of Computer science engineering Techniques-– Volume 8 Issue 4, 2024

ISSN: 2455-135X http://www.ijcsejournal.org Page 2

channel signals collected from the EEG sensors.
The extraction method is efficiently used to detect
brain rhythm which is the cause of specific activity.
Thus extracted brain waves i.e. rhythmic
components are used to implement brain computer
interface (BCI) [10]. During the recording of EEG,
physiological noises are inherently added with the
pure brain activity signals. The rhythmic
component extraction (RCE) from the noisy EEG is
very much challenging, whereas, the effective
extraction of the brain waves is a crucial stage to
apply the EEG in clinical diagnosis and/or so-called
BCI implementation. The traditional signal
processing methods such as linear filtering or the
Fourier transform are not effective to detect the
rhythmic signal especially if the noise power so
higher than a level [5].
The EEG signal is mostly multichannel and

hence the RCE is developed to extract a rhythmic
oscillatory components or brain waves with
multivariate signal processing approach [11].
Traditionally, the desired rhythmic components are
extracted by applying linear combination of the
multichannel recorded signal signals and the
respective coefficients. The method only uses the
physically underlying frequency information. It
effectively separates the signal representing desired
rhythmic components having the energy mostly in
the frequency of the component. Additionally, the
rhythmic component is independent of subjects and
method of learning of the extraction system. The
band-pass filtering through frequency analysis is a
well-established method to work with a single
channel signal. The time-invariant band-limited
filtering by applying Fourier transform is as
effective way to the desired frequency component
[12]. It is noted that the Fourier transform based
filtering is not suitable for non-stationary signal like
EEG. To handle such signal, the classical time-
frequency analyzers like short-time Fourier
transform (STFT) and wavelet transforms (WT) [10]
is more suitable. The Fourier based approach
directly makes use of priori basis function.
Although WT is considered as data adaptive
method it also employs basis wavelet function.
Hence the both methods are very much model
dependent rather than data.

In this paper, a data driven subband filtering is
implemented to extract the rhythmic components
from multichannel EEG signals. The traditional
model-based filtering approach is not adequate for
effective filtering of rhythmic components. Hence,
data adaptive empirical mode decomposition (EMD)
[13, 14] based approach is used for RCE. The EEG
signal is naturally non-stationary and nonlinear and
EMD is very much effective for its decomposition.
It decomposes the signal into a finite number of
subbands for a single channel signal. EEG is being
multichannel the traditional EMD is not effective.
The multivariate EMD (MEMD) [15, 16] is
employed here to decompose multichannel EEG at
a time producing the subband signals. Then band
pass filtering s applied to obtain the intended
rhythmic components.

Fig. 1 A sample line graph using colors which contrast well both on screen
and on a black-and-white hardcopy

II. DATA DESCRIPTION

The data used in this study is obtained from the
experiment conducted in Advanced Brain Signal
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Processing Laboratory of RIKEN Brain Science
Institute, Japan. The experiment is on the execution
of motor imagery task for left hand and right hand
movements. Each of movement imagery tasks is for
four seconds. The EEG channels (electrodes) used
in the experiment are C1, C2, C3, C4, C5, C6, T7,
T8, CP1, CP2, CP3, CP4, CP5, and CP6 and a10-
20 EEG system. The signals are recorded 512Hz
sampling frequency using the g.USBamp bio-signal
amplifier. The recorded signals are artifact free i.e.
no physiological noise is included. The issue is
confirmed by visual inspection. The EEG for single
trial with 14 channels is illustrated in Fig. 1.

III. METHODOLOGY

All Rhythms extraction from
electroencephalography (EEG) signals can be used
to monitor the physiological and pathological states
of the brain and has attracted much attention in
recent studies. A flexible and accurate method for
EEG rhythms extraction is demanding in BCI
research. The accuracy of EEG rhythms extraction
determines the physiological and pathological
information it provides. Various methods have been
proposed to extract the desired EEG rhythms.
Filtering components have the ability to restrict a
signal to a specific frequency band, and such
bandpass filters were first used to extract EEG
rhythms [17]. This method performed well in EEGs
of high signal-to-noise ratio (SNR). Then, the
wavelet transform (WT) method was used for EEG
rhythms extraction [8]. By estimating the rhythms
with a customized wavelet, the WT method can
extract time-varying EEG rhythms with changes in
brain state. To facilitate the EEG rhythms
extraction, the independent component analysis
(ICA) method was implemented previously. By
incorporating priori information about the desired
rhythms as reference signals, the ICA method can
extract EEG rhythms automatically. However, the
extracted rhythms using the bandpass filter, WT,
and ICA methods were contaminated by noise and
artifacts overlapping in time–frequency space [9].
The block diagram of the proposed method for

rhythmic component extraction is illustrated in Fig.
2. The recorded EEG is usually contaminated by
different physiological noises. The multichannel
EEG signal is decomposed into a finite set of band

limited signals using multivariate empirical mode
decomposition (MEMD). The MEMD method is a
multivariate extension of EMD. Standard EMD
decomposes a signal into a finite set of oscillatory
components called IMFs which represent the
underlying temporal scales within the input data, by
means of an iterative process called sifting
algorithm. However, EMD considers only one-
dimensional signals, and is prone to mode-mixing
because of the overlapping of IMF spectra. For
multivariate signals, e.g., EEG data collected from
multiple channels, MEMD is explored by
generating multi-dimensional envelopes, then
taking signal projections along different directions,
and finally averaging these projects to obtain the
local mean [18].

Fig. 2 Block diagram of the proposed method for rhythmic component
extraction

Each of the IMFs is filtered using bandpass filter
to extract one of the rhythmic components among
delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),
beta (13–30 Hz) and gamma (>30 Hz). For instance,
all the IMFs obtained from any channel are
bandpass filtered of frequency range 4 – 8 Hz. Thus,
obtained components are summed up to reconstruct
theta rhythmic component. Other rhythmic
components are constructed in the similar way.
A. Subband Decomposition

The band-pass filtering is essential to separate the
rhythmic components from EEG. The well-known

http://www.ijcsejournal.org


International Journal of Computer science engineering Techniques-– Volume 8 Issue 4, 2024

ISSN: 2455-135X http://www.ijcsejournal.org Page 4

Fourier based signal analysis method is based on the
assumption of linearity and stationarity of the
analyzing signal. [13]. Even the WT and STFT are
used by considering the signal as non-stationary but
linear. Also there exist some methods to assume the
data as non-linear but stationary [13]. It is currently
demanding to have a method which is able to
analyze the non-linear and non-stationary signal. A
recently developed subband decomposition method
is EMD that provides a fully data-dependent
decomposition of non-stationary and non-linear
signals [14]. It produces a set of linearly
independent functions in which instantaneous
frequency can be well-defined.
The multivariate EMD (MEMD) is

implementation of univariate EMD to decompose
multivariate signal [15]. It extracts all possible
IMFs from individual channel of multivariate data
like EEG signal. It is noted that same number of
IMFs are extracted from each of the channels. The
decomposition of multichannel EEG also preserves
the covariation of the channels over time. The
MEMD exposes the multivariate filter-bank
structure with dyadic property [15]. The algorithm
introduced in [14] is employed here to decompose
the multichannel EEG signal X(t) into a set of IMF
components.
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6. Separate the “detail” d(t) using d(t) = X(t) - μ(t).
If d(t) fulfills the stopping criterion for the

multivariate IMF, d(t) is obtained as the IMF.
Apply the above procedure to X(t)-d(t),
otherwise apply it to d(t).

When EEG signal of N channels is decomposed
using MEMD, the nth channel is represented as:





M

m

n
M

n
mn trtgtx

1

)()( )()()( (2)

where gm is mth IMF, rM is the final residue and M is the total
number of IMFs extracted from each channel.

Fig. 3 The IMFs of channel T7 (left) and T8 (right) obtained by MEMD. The
lower order IMFs represent the higher frequency components.

The multiband representation of individual EEG
channel can be expressed in the similar way as in
Eq. (4). It is noted that the same number of IMFs
are generated by decomposing the both signals
together. The MEMD method is fully data adaptive
and the number of IMF depends of the nature of
data. The IMFs obtained by decomposing channel
T7 and T8 simultaneously are illustrated in Fig. 3.
B. Rhythmic Component Extraction

The rhythmic components in non-invasive EEG
have numerous applications in BCI implementation
[19]. In terms of neural activities, it is considered
that the recorded EEG signal is composed of the
predefined rhythmic components. Each of the
components is responsible for some specific
activities and sometimes a group of components
plays role to execute the intended motor task. Hence
the rhythmic components are the meaningful
sources of neurophysiological task represented by
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underlying multichannel EEG recording. The brain
state of the individual may make certain frequencies
more dominant. We introduce a method to
successively filter the desired brain wave (rhythmic
component) from a series of subband signals
obtained by applying a fully data-adaptive MEMD
technique [14]. The method relies on a combination
of subband decomposition and Fourier
transformation (FT) based bandpass filtering. It is
well known that FT is only suitable for stationary
signals, whereas, the EEG signal is always non-
stationary. MEMD is used to decompose EEG into
time varying subband signals (IMFs) which are
individually more stationary than EEG in full
bandwidth. Hence, FT based filtering becomes more
suitable for bandpass filtering applying to the IMFs.
For the nth EEG channels, the individual IMF is
filtered using bandpass filtering with specific
bandwidth corresponding to desired rhythmic
component. The filtered mth IMF of nth channel is
defined as:

 )()(ˆ )()( tgtg n
m

h
l

n
m  (3)

where, (.)h
l is the bandpass filter function with

lower and upper cutoff frequencies l and h
respectively. Then the rhythmic component for the
frequency range l – h extracted from nth channel is
represented as:
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Each of the rhythmic components for individual
channel is extracted by the same procedure.
C. Proposed Algorithm
Although the EMD acts as data adaptive

multiband decomposition method it decomposes
only one channel at a time into a finite number of
subband signals called IMFs. On the other hand,
MEMD decomposes each channel of multichannel
data simultaneously and hence MEMD is employed
here for rhythmic component extraction by
following the steps mentioned bellow:
i. The multichannel EEG signal is decomposed

using MEMD into a finite number of IMFs.
Same number of IMFs is generated for
individual channel of EEG. Even higher number
of IMFs is generated than that of using

univariate EMD. Hence, it confirms the better
frequency disjoint in IMF domain.

ii. Each of the IMFs of a specific channel is
filtered by using zero phase band pass filter for
intended rhythmic component. The filtered
IMFs contain only the energy of the specific
component.

iii.The filtered IMFs of a channel are summed up
to extract the component for which the band
pass filter is applied.

iv.The steps b and c are repeated in sequence for
each of the intended rhythmic components.

The above steps (ii) to (iv) are repeated to extract
the intended components from all the channels used
in EEG recording.

IV. EXPERIMENTAL RESULTS

The proposed rhythmic components (brain waves)
extraction method is evaluated using real EEG
signals as described in Section II(A). MEMD is
applied to decompose any trial of multichannel EEG.
The obtained IMFs of channel are illustrated in Fig.
4. All the channels of the trial is decomposed
simultaneously. It is noted that the same number of
IMFs are generated for each of the channels.

Fig. 4 The eleven IMFs obtained by applying MEMD on the first channel C1
of EEG signal.
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The correlation and interrelation between the
channels are considered during decomposition
using MEMD. To extract the rhythmic components
of EEG signals, the decomposition with MEMD is
followed by band pass filtering. The band pass
filtering is implemented with Butterworth zero
phase filter such that it does not make any effect to
the phase of the signal. The band pass filtering is
applied to individual IMF for specific rhythmic
component among delta (0.5-4Hz), theta (4-8Hz),
alpha (8-16Hz) and beta (16-30Hz) as indicated in
Eq (3). The delta components corresponding to
each of the IMFs of channel C1 are illustrated in
Fig. 5. It is observed that the energy of delta
component is higher for lower frequency IMFs.

F
ig. 5 The extracted delta component obtained by bandpass filtering of 11

IMFs of channel C1.

Fig. 6 The four rhythmic components obtained from channel C1 using
MEMD followed by applying zero phase band pass filtering.

Fig. 7 The energy variation of different rhythmic components as a function of
channel.

Any rhythmic component of a specific channel is
recontructed by summing up the IMFs after filtering
for corresponding component as defined by Eq. (4).
For instance, the delta rhythm of C1 channel can be
extracted by summing up the filtered IMFs of Fig. 4.
The extracted four rhythmic components from
channel C1 are presented in Fig. 6. The components
of other 13 channels can be extracted in the similar
process.
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There exists the variation of energies contributed
by different rhythmic components in different
channels. The amount of information contained by
individual component is varied over the channels. It
is very much justified in respect to the mechanism
of neural activities. A specific region of human
brain can produce neural response for specific task,
whereas, the other regions are busy with other task.
As a result, the variations of the energy of rhythmic
components are distributed over the spatial domain.
As a proof of the findings, the energies of different
rhythmic components as a function of channel
index are illustrated in Fig. 7. It is observed that the
energy variation of different components is varied
over the channels. Hence the proposed method is
very much effective and efficient in extraction of
rhythmic components from the multichannel EEG
signal. It is well established that the Fourier
transform based filtering is only effective for non-
stationary signal. The MEMD produces IMFs
which are band limited and more stationary than the
original EEG signal. Hence the use of bandpass
filter on IMF rather than directly on EEG is more
effective and justified to extract the rhythmic
components.

V. CONCLUSIONS
An effective and data adaptive method is

implemented to extract rhythmic components from
multichannel EEG signal. MEMD is employed here
to decompose the multichannel EEG signal
simultaneously into a finite number of subbands
called IMFs. It considers the inter-channel
dependency of different channels during the
decomposition. It produces higher number of IMFs
than univariate EMD and hence confirms better
frequency disjoint in IMF domain. The IMFs of any
channel are filtered using band pass filter for
specific rhythmic components. Finally the filtered
IMFs are summed up to reconstruct the intended
rhythmic component. The same process is repeated
for individual channel. The proposed approach is
more noise robust and not affected by the
physiological artifacts which are usually introduced
in EEG. Thus extracted rhythmic components are
useful in classification of neural activities leading to
BCI implementation. The implementation of
machine learning for EEG classification with
extracted rhythmic components for BCI application
is left for future work.
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